Temperley–Lieb $R$-matrices from generalized Hadamard matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 255-273 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct new sets of rank $n$-representations of the Temperley–Lieb algebra $TL_N(q)$ that are characterized by two matrices with a generalized complex Hadamard property. We give partial classifications for the two matrices, in particular, in the case where they reduce to Fourier or Butson matrices.
Keywords: Yang–Baxter equation, Temperley–Lieb algebra
Mots-clés : $R$-matrix, Hadamard matrix.
@article{TMF_2014_178_2_a3,
     author = {J. Avan and T. Fonseca and L. Frappat and P. P. Kulish and {\CYREREV}. Ragoucy and G. Rollet},
     title = {Temperley{\textendash}Lieb $R$-matrices from generalized {Hadamard} matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {255--273},
     year = {2014},
     volume = {178},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a3/}
}
TY  - JOUR
AU  - J. Avan
AU  - T. Fonseca
AU  - L. Frappat
AU  - P. P. Kulish
AU  - Э. Ragoucy
AU  - G. Rollet
TI  - Temperley–Lieb $R$-matrices from generalized Hadamard matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 255
EP  - 273
VL  - 178
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a3/
LA  - ru
ID  - TMF_2014_178_2_a3
ER  - 
%0 Journal Article
%A J. Avan
%A T. Fonseca
%A L. Frappat
%A P. P. Kulish
%A Э. Ragoucy
%A G. Rollet
%T Temperley–Lieb $R$-matrices from generalized Hadamard matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 255-273
%V 178
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a3/
%G ru
%F TMF_2014_178_2_a3
J. Avan; T. Fonseca; L. Frappat; P. P. Kulish; Э. Ragoucy; G. Rollet. Temperley–Lieb $R$-matrices from generalized Hadamard matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 255-273. http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a3/

[1] H. N. V. Temperley, E. Lieb, Proc. Roy. Soc. London Ser. A, 322:1549 (1971), 251–280 | DOI | MR | Zbl

[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[3] P. Martin, Potts Models and Related Problems in Statistical Mechanics, Series on Advances in Statistical Mechanics, 5, World Sci., Singapore, 1991 | MR | Zbl

[4] Zh. Avan, P. P. Kulish, Zh. Rollet, TMF, 169:2 (2011), 194–203 | DOI | DOI | Zbl

[5] P. P. Kulish, J. Phys. A, 36:38 (2003), L489–L493 | DOI | MR | Zbl

[6] P. P. Kulish, N. Manojlović, Z. Nagy, J. Math. Phys., 49:2 (2008), 023510, 9 pp. | DOI | MR | Zbl

[7] G. Wang, K. Xue, C. Sun, C. Zhou, T. Hu, Q. Wang, Quantum Inf. Process., 9:6 (2010), 699–710, arXiv: 0903.3711 | DOI | MR | Zbl

[8] C. Sun, G. Wang, T. Hu, C. Zhou, Q. Wang, K. Xue, Internat. J. Quantum Inf., 7:6 (2009), 1285–1293, arXiv: 0904.0090 | DOI | Zbl

[9] F. Szöllősi, Construction, classification and parametrization of complex Hadamard matrices, arXiv: 1110.5590

[10] W. Tadej, K. .{Z}yczkowski, Open Syst. Inf. Dyn., 13:2 (2006), 133–177 | DOI | MR | Zbl

[11] V. Chari, A. N. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[12] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[13] V. Jones, Internat. J. Modern Phys. B, 4:5 (1990), 701–713 | DOI | MR | Zbl

[14] J. J. Sylvester, Phil. Mag. Ser. 4, 34:232 (1867), 461–475

[15] A. T. Butson, Proc. AMS, 13 (1962), 894–898 | DOI | MR | Zbl

[16] N. Barros e Sa, I. Bengtsson, Linear Algebra Appl., 438:7 (2013), 2929–2957, arXiv: 1202.1181 | DOI | MR | Zbl

[17] F. Szöllősi, J. London Math. Soc., 85:3 (2012), 616–632 | DOI | MR | Zbl

[18] P. Diţă, J. Phys. A, 37:20 (2004), 5355–5374 | DOI | MR | Zbl

[19] M. Drmota, M. Skałba, Acta Arith., 71:1 (1995), 64–77 | MR | Zbl

[20] K. Fujii, K. Funahashi, T. Kobayashi, Internat. J. Geom. Methods Modern Phys., 3:2 (2006), 269–283 | DOI | MR | Zbl

[21] G. Rollet, private communication, 2013