Vector acoustic solitons from the~coupling of long and short waves in a~paramagnetic crystal
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 230-254

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the propagation of a longitudinal–transverse elastic pulse in a statically deformed crystal containing paramagnetic impurities and placed in an external magnetic field. We derive a system of three nonlinear wave equations describing the interaction of the pulse with the paramagnetic impurities in the quasiresonance approximation in the Faraday geometry. We assume that the transverse components of the pulse, which cause quantum transitions, have carrier frequencies and are short-wave (acoustic), while the longitudinal component has no carrier frequency and is long-wave. We show that in the case of an equilibrium initial distribution of populations of quantum levels of paramagnetic impurities, the coupling between the longitudinal and transverse components is weak, the pulse is therefore strictly transverse, and its dynamics are described by the Manakov system. With a nonequilibrium initial distribution of populations, conditions of effective interaction between all components of the elastic pulse can be reached, and their nonlinear dynamics are described by a vector generalization of the Zakharov equations. In the case of a unidirectional propagation of the pulse, these equations reduce to the Yajima–Oikawa vector system. We show that the obtained system of equations and its version with an arbitrary number of short-wave components can be integrated using the inverse scattering transform. We construct infinite hierarchies of solutions of the Yajima–Oikawa vector system (including a solution on a nontrivial background. We consider stationary (complex-valued Garnier system) and self-similar reductions of that system, also admitting a representation in the form of compatibility conditions.
Mots-clés : soliton
Keywords: nonlinear integrable equations, resonance of long and short waves.
@article{TMF_2014_178_2_a2,
     author = {S. V. Sazonov and N. V. Ustinov},
     title = {Vector acoustic solitons from the~coupling of long and short waves in a~paramagnetic crystal},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {230--254},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a2/}
}
TY  - JOUR
AU  - S. V. Sazonov
AU  - N. V. Ustinov
TI  - Vector acoustic solitons from the~coupling of long and short waves in a~paramagnetic crystal
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 230
EP  - 254
VL  - 178
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a2/
LA  - ru
ID  - TMF_2014_178_2_a2
ER  - 
%0 Journal Article
%A S. V. Sazonov
%A N. V. Ustinov
%T Vector acoustic solitons from the~coupling of long and short waves in a~paramagnetic crystal
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 230-254
%V 178
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a2/
%G ru
%F TMF_2014_178_2_a2
S. V. Sazonov; N. V. Ustinov. Vector acoustic solitons from the~coupling of long and short waves in a~paramagnetic crystal. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 230-254. http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a2/