Qualitative theory of $p$-adic dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 220-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of dynamical systems over the $p$-adic number field: hierarchical dynamical systems. We prove a strong variant of the Poincaré theorem on the number of returns for such systems and show that hierarchical systems do not admit mixing. We describe hierarchical dynamical systems over the projective line and present an example of a nonhierarchical $p$-adic system that admits mixing: the $p$-adic baker's transformation.
Keywords: $p$-adic dynamical system, ergodicity, mixing, $p$-adic baker's transformation.
@article{TMF_2014_178_2_a1,
     author = {E. I. Zelenov},
     title = {Qualitative theory of $p$-adic dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {220--229},
     year = {2014},
     volume = {178},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a1/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - Qualitative theory of $p$-adic dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 220
EP  - 229
VL  - 178
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a1/
LA  - ru
ID  - TMF_2014_178_2_a1
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T Qualitative theory of $p$-adic dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 220-229
%V 178
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a1/
%G ru
%F TMF_2014_178_2_a1
E. I. Zelenov. Qualitative theory of $p$-adic dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 2, pp. 220-229. http://geodesic.mathdoc.fr/item/TMF_2014_178_2_a1/

[1] I. V. Volovich, Number theory as the ultimate physical theory, Preprint CERN-TH 4781/87, Cern, Geneva, 1987 | MR

[2] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic Analysis and Mathematical Physics, Series on Soviet and East European Mathematics, 1, World Sci., Singapure, 1994 | MR | Zbl

[3] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl

[4] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, J. Phys. A, 35:2 (2002), 177–189, arXiv: cond-mat/0106506 | DOI | MR | Zbl

[5] V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, De Gruyter Expositions in Mathematics, 49, Walter de Gruyter, Berlin, 2009 | DOI | MR | Zbl

[6] Zh.-P. Serr, Algebry Li i gruppy Li, Mir, M., 1969 | MR | MR | Zbl | Zbl

[7] Yu. A. Neretin, Izv. RAN. Ser. matem., 56:5 (1992), 1072–1085 | DOI | MR | Zbl

[8] V. A. Avetisov, A. Kh. Bikulov, A. P. Zubarev, J. Phys. A, 42:8 (2009), 085003, 18 pp., arXiv: 0808.3066 | DOI | MR | Zbl

[9] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | MR | Zbl

[10] V. A. Avetisov, Phys. Rev. E, 81:4 (2010), 046211, 6 pp. | DOI | MR

[11] J.-P. Serre, Trees, Springer, Berlin, Heidelberg, New York, 1980 | MR | Zbl