Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 147-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the Mermin approach, we obtain formulas for the longitudinal electric conductivity in a quantum collisional plasma with a collision frequency depending on the momentum. We use a kinetic equation in the momentum space in the relaxation approximation. We show that as the Planck constant tends to zero, the derived formula transforms into the corresponding formula for a classical plasma. We also show that as the frequency of collisions between plasma particles tends to zero (the plasma transforms into a collisionless plasma), the derived formula transforms into the well-known Klimontovich–Silin formula for the collisionless plasma. We show that if the collision frequency is constant, then the derived formula for the permittivity transforms into the well-known Mermin formula.
Keywords: Klimontovich–Silin formula, Mermin approach, conductivity, quantum collisional plasma, Schrödinger equation.
@article{TMF_2014_178_1_a5,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Longitudinal electric conductivity in a~quantum plasma with a~variable collision frequency in the~framework of {the~Mermin} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--160},
     year = {2014},
     volume = {178},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a5/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 147
EP  - 160
VL  - 178
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a5/
LA  - ru
ID  - TMF_2014_178_1_a5
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 147-160
%V 178
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a5/
%G ru
%F TMF_2014_178_1_a5
A. V. Latyshev; A. A. Yushkanov. Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 147-160. http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a5/

[1] Yu. Klimontovich, V. P. Silin, ZhETF, 23 (1952), 151–160 | Zbl

[2] J. Lindhard, Danske Vid. Selsk. Mat.-Fys. Medd., 28:8 (1954), 1–57 | MR

[3] N. D. Mermin, Phys. Rev. B, 1:5 (1970), 2362–2363 | DOI

[4] K. L. Kliewer, R. Fuchs, Phys. Rev., 181:2 (1969), 552–558 | DOI

[5] A. K. Das, J. Phys. F, 5:11 (1975), 2035–2040 | DOI

[6] B. N. J. Persson, J. Phys. C, 13:3 (1980), 435–439 | DOI

[7] A. V. Latyshev, A. A. Yushkanov, TMF, 169:3 (2011), 431–443 | DOI | DOI | MR | Zbl

[8] A. V. Latyshev, A. A. Yushkanov, Fizika plazmy, 38:11 (2012), 977–986 | DOI

[9] A. V. Latyshev, A. A. Yushkanov, Transverse electric conductivity in quantum collisional plasma in Mermin approach, arXiv: 1109.6554

[10] G. Manfredi, “How to model quantum plasmas”, Topics in Kinetic Theory (Toronto, Canada, 24–26 March, 2004), Fields Institute Communications, 46, eds. T. Passot, C. Sulem, P. L. Sulem, 2005, 263–287, arXiv: quant-ph/0505004 | MR | Zbl

[11] D. Anderson, B. Hall, M. Lisak, M. Marklund, Phys. Rev. E, 65:4 (2002), 046417, 5 pp., arXiv: quant-ph/0305102 | DOI

[12] P. de Andrés, R. Monreal, F. Flores, Phys. Rev. B, 34:10 (1986), 7365–7366 | DOI

[13] P. K. Shukla, B. Eliasson, UFN, 180:1 (2010), 55–82 | DOI | DOI

[14] M. Opher, G. J. Morales, J. N. Leboeuf, Phys. Rev. E, 66:1 (2002), 016407, 10 pp. | DOI | MR

[15] A. P. van Gelder, Phys. Rev., 187:3 (1969), 833–842 | DOI

[16] M. Dressel, G. Grüner, Electrodynamics of Solids. Optical Properties of Electrons in Matter, Cambridge Univ. Press, Cambridge, 2003

[17] A. Wierling, Interpolation between static local field corrections and the Drude model by a generalized Mermin approach, arXiv: 0812.3835

[18] G. Brodin, M. Marklund, G. Manfredi, Phys. Rev. Lett., 100:17 (2008), 175001, 4 pp., arXiv: 0802.0169 | DOI

[19] G. Manfredi, F. Haas, Phys. Rev. B, 64:7 (2001), 075316, 7 pp., arXiv: cond-mat/0203394 | DOI

[20] H. Reinholz, G. Röpke, Phys. Rev. E, 85:3 (2012), 036401, 16 pp. | DOI | MR

[21] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR | MR

[22] A. A. Abrikosov, Vvedenie v teoriyu normalnykh metallov, Nauka, M., 1972

[23] A. V. Latyshev, A. A. Yushkanov, Longitudinal electric conductivity and dielectric permeability in quantum plasma with variable frequency of collisions in Mermin' approach, arXiv: 1212.5659

[24] A. V. Latyshev, T. V. Tereshina, A. A. Yushkanov, Sib. zhurn. industr. matem., 13:3 (2010), 76–85 | MR | Zbl

[25] G. Röpke, A. Selchow, A. Wierling, H. Reinholz, Phys. Lett. A, 260:5 (1999), 365–369 | DOI

[26] A. Selchow, G. Röpke, A. Wierling, Contr. Plasma Phys., 2002, no. 1, 43–54 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[27] R. Thiele, T. Bornatz, C. Fortmann, A. Höll, R. Redmer, H. Reinholz, G. Röpke, A. Wierling, S. H. Glenzer, G. Gregori, Phys. Rev. E, 78:2 (2008), 026411, 8 pp. | DOI

[28] H. Reinholz, R. Redmer, G. Röpke, A. Wierling, Phys. Rev. E, 62:4 (2000), 5648–5666 | DOI