Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 88-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem for eigenvalues of a perturbed two-dimensional oscillator in the case of a resonance frequency. The exciting potential is given by a Hartree-type integral operator with a smooth self-action potential. We find asymptotic eigenvalues and asymptotic eigenfunctions near the upper boundary of spectral clusters, which form around energy levels of the nonperturbed operator. To calculate them, we use asymptotic formulas for quantum means.
Keywords: self-consistent field, method of quantum averaging, coherent transformation, WKB approximation, spectral cluster, quantum mean.
@article{TMF_2014_178_1_a2,
     author = {A. V. Pereskokov},
     title = {Semiclassical asymptotic spectrum of {a~Hartree-type} operator near the~upper boundary of spectral clusters},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--106},
     year = {2014},
     volume = {178},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a2/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 88
EP  - 106
VL  - 178
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a2/
LA  - ru
ID  - TMF_2014_178_1_a2
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 88-106
%V 178
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a2/
%G ru
%F TMF_2014_178_1_a2
A. V. Pereskokov. Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 88-106. http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a2/

[1] L. P. Pitaevskii, UFN, 168:6 (1998), 641–653 | DOI

[2] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | MR

[3] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[4] I. V. Simenog, TMF, 30:3 (1977), 408–414 | DOI | MR

[5] M. V. Karasev, Kvantovaya reduktsiya na orbity algebr simmetrii i zadacha Erenfesta, Preprint ITF-87-157R, ITF AN USSR, Kiev, 1987

[6] S. A. Vakulenko, V. P. Maslov, I. A. Molotkov, I. A. Shafarevich, Dokl. RAN, 345:6 (1995), 743–745 | MR | Zbl

[7] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:5 (2001), 33–72 | DOI | DOI | MR | Zbl

[8] M. V. Karasev, A. V. Pereskokov, Izv. RAN. Ser. matem., 65:6 (2001), 57–98 | DOI | DOI | MR | Zbl

[9] A. V. Pereskokov, TMF, 131:3 (2002), 389–406 | DOI | DOI | MR | Zbl

[10] V. V. Belov, E. I. Smirnova, Matem. zametki, 80:2 (2006), 309–312 | DOI | DOI | MR | Zbl

[11] V. V. Belov, F. N. Litvinets, A. Yu. Trifonov, TMF, 150:1 (2007), 26–40 | DOI | DOI | MR | Zbl

[12] A. L. Lisok, A. Yu. Trifonov, A. V. Shapovalov, Izv. Tomsk. politekhn. un-ta, 314:2 (2009), 66–71

[13] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR | Zbl

[14] M. V. Karasev, V. P. Maslov, UMN, 39:6(240) (1984), 115–173 | DOI | MR | Zbl

[15] M. V. Karasev, “Birkhoff resonances and quantum ray method”, Proceedings of International Seminar “Days of Diffraction–2004”, St. Petersburg University and Steklov Math. Institute, St. Petersburg, 2004, 114–126 | DOI | MR

[16] M. V. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances, I”, Quantum Algebras and Poisson Geometry in Mathematical Physics, American Mathematical Society Translations Series 2, 216, AMS, Providence, RI, 2005, 1–18 ; Adv. Stud. Contemp. Math., 11:1 (2005), 33–56 ; Russ. J. Math. Phys., 13:2 (2006), 131–150 | MR | Zbl | MR | Zbl | DOI | MR | Zbl

[17] M. Karasev, “Resonance gyrons and quantum geometry”, From Geometry to Quantum Mechanics. In Honor of Hideki Omori, Progress in Mathematics, 252, eds. Y. Maeda, T. Ochiai, P. Michor, A. Yoshioka, Birkäuser, Boston, 2007, 253–275 | DOI | MR | Zbl

[18] A. V. Pereskokov, Matem. zametki, 92:4 (2012), 583–596 | DOI | MR | Zbl

[19] A. V. Pereskokov, Izv. RAN. Ser. matem., 77:1 (2013), 165–210 | DOI | DOI | MR | Zbl

[20] A. V. Pereskokov, Tr. MMO, 73:2 (2012), 277–325 | Zbl

[21] A. V. Pereskokov, NMFM, 8:1 (2013), 65–84 | MR

[22] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950 | MR | Zbl

[23] A. Weinstein, Duke Math. J., 44:4 (1977), 883–892 | DOI | MR | Zbl

[24] J. Schwinger, “On angular momentum”, Quantum Theory of Angular Momentum, eds. L. C. Biedenham, H. van Dam, Academic Press, New York, 1965, 229–279 | MR

[25] M. V. Karasev, E. M. Novikova, “Non-Lie permutation relations, coherent states, and quantum embedding”, Coherent Transform, Quantization, and Poisson Geometry, American Mathematical Society Translations Series 2, 187, ed. M. V. Karasev, AMS, Providence, RI, 1998, 1–202 | MR | Zbl

[26] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | MR | Zbl

[27] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | DOI | MR

[28] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[29] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[30] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl