Scalar field vacuum polarization on homogeneous spaces with an invariant metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 69-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a method for calculating vacuum expectation values of the energy–momentum tensor of a scalar field on homogeneous spaces with an invariant metric. Solving this problem involves the method of generalized harmonic analysis based on the method of coadjoint orbits.
Keywords: vacuum polarization, energy–momentum tensor, harmonic analysis on homogeneous spaces.
@article{TMF_2014_178_1_a1,
     author = {A. I. Breev},
     title = {Scalar field vacuum polarization on homogeneous spaces with an~invariant metric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--87},
     year = {2014},
     volume = {178},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a1/}
}
TY  - JOUR
AU  - A. I. Breev
TI  - Scalar field vacuum polarization on homogeneous spaces with an invariant metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 69
EP  - 87
VL  - 178
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a1/
LA  - ru
ID  - TMF_2014_178_1_a1
ER  - 
%0 Journal Article
%A A. I. Breev
%T Scalar field vacuum polarization on homogeneous spaces with an invariant metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 69-87
%V 178
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a1/
%G ru
%F TMF_2014_178_1_a1
A. I. Breev. Scalar field vacuum polarization on homogeneous spaces with an invariant metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 69-87. http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a1/

[1] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1980

[2] N. Birrell, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[3] L. Parker, D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[4] J. Hero, Topics in quantum field theory in curved space, arXiv: 1011.4772

[5] A. DeBenedictis, K. S. Viswanathan, Stress-energy tensors for higher dimensional gravity, arXiv: hep-th/9911060

[6] S. M. Christensen, Phys. Rev. D, 14:10 (1976), 2490–2501 | DOI | MR

[7] Ya. B. Zeldovich, A. A. Starobinskii, ZhETF, 61:6 (1972), 2161–2175

[8] V. G. Bagrov, D. M. Gitman, Exact Solutions of Relativistic Wave Equations, Mathematics and its Applications (Soviet Series), 39, Kluwer, Dordrecht, 1990 | MR | Zbl

[9] E. G. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, John Wiley Sons, New York, 1986 | MR | Zbl

[10] V. V. Obukhov, K. E. Osetrin, Klassifikatsionnye problemy v teorii gravitatsii, Izd-vo TGPU, Tomsk, 2007

[11] A. V. Shapovalov, I. V. Shirokov, TMF, 104:2 (1995), 195–213 | DOI | MR | Zbl

[12] A. V. Shapovalov, I. V. Shirokov, TMF, 106:1 (1996), 3–15 | DOI | DOI | MR | Zbl

[13] A. A. Kirillov, 17, no. 4(106), 1962, 57–110 | DOI | MR | Zbl

[14] A. A. Kirillov, Funkts. analiz i ego pril., 2:2 (1968), 40–55 | DOI | MR | Zbl

[15] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | DOI | MR | MR | Zbl

[16] B. Konstant, “Quantzation and Unitary Representations. I. Prequantization”, Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, 170, ed. C. T. Taam, Springer, Berlin, 1970, 87–208 | DOI | MR

[17] J. M. Souriau, Structure de systèmes dynamique. Maitrises de mathématiques, Dunod, Paris, 1970 | MR | Zbl

[18] A. I. Breev, I. V. Shirokov, A. A. Magazev, TMF, 167:1 (2011), 78–95 | DOI | DOI | MR | Zbl

[19] I. V. Shirokov, $K$-orbity, garmonicheskii analiz na odnorodnykh prostranstvakh i integrirovanie differentsialnykh uravnenii, Preprint, OmGU, Omsk, 1998

[20] I. V. Shirokov, TMF, 123:3 (2000), 407–423 | DOI | DOI | MR | Zbl

[21] I. V. Shirokov, TMF, 126:3 (2001), 393–408 | DOI | DOI | MR | Zbl

[22] S. P. Baranovskii, I. V. Shirokov, Sib. matem. zhurn., 50:4 (2009), 737–745 | DOI | MR | Zbl

[23] V. Moretti, Phys. Rev. D., 56:12 (1997), 7797–7819 | DOI | MR

[24] A. I. Breev, Izv. vuzov. Fizika, 53:4 (2010), 86–92 | DOI | MR | Zbl

[25] A. O. Barut, R. Ronchka, Teoriya predstavlenii grupp i ee prilozheniya, v. 1, Mir, M., 1980 | MR | MR | Zbl

[26] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994 | MR | Zbl