Cabling procedure for the colored HOMFLY polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 3-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss using the cabling procedure to calculate colored HOMFLY polynomials. We describe how it can be used and how the projectors and $\mathcal R$-matrices needed for this procedure can be found. The constructed matrix expressions for the projectors and $\mathcal R$-matrices in the fundamental representation allow calculating the HOMFLY polynomial in an arbitrary representation for an arbitrary knot. The computational algorithm can be used for the knots and links with $|Q|m\le12$, where $m$ is the number of strands in a braid representation of the knot and $|Q|$ is the number of boxes in the Young diagram of the representation. We also discuss the justification of the cabling procedure from the group theory standpoint, deriving expressions for the fundamental $\mathcal R$-matrices and clarifying some conjectures formulated in previous papers.
Keywords: Chern–Simons theory, knot theory, representation theory.
@article{TMF_2014_178_1_a0,
     author = {A. S. Anokhina and A. A. Morozov},
     title = {Cabling procedure for the~colored {HOMFLY} polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--68},
     year = {2014},
     volume = {178},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a0/}
}
TY  - JOUR
AU  - A. S. Anokhina
AU  - A. A. Morozov
TI  - Cabling procedure for the colored HOMFLY polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2014
SP  - 3
EP  - 68
VL  - 178
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a0/
LA  - ru
ID  - TMF_2014_178_1_a0
ER  - 
%0 Journal Article
%A A. S. Anokhina
%A A. A. Morozov
%T Cabling procedure for the colored HOMFLY polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2014
%P 3-68
%V 178
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a0/
%G ru
%F TMF_2014_178_1_a0
A. S. Anokhina; A. A. Morozov. Cabling procedure for the colored HOMFLY polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 178 (2014) no. 1, pp. 3-68. http://geodesic.mathdoc.fr/item/TMF_2014_178_1_a0/

[1] W. Ehrenberg, R. E. Siday, Proc. Phys. Soc. B, 62:1 (1949), 8–21 | DOI | Zbl

[2] Y. Aharonov, D. Bohm, Phys. Rev., 115:3 (1959), 485–491 | DOI | MR | Zbl

[3] S. Coleman, Aspects of Symmetry, Cambridge Univ. Press, Cambridge, 1985 | Zbl

[4] V. Rubakov, Classical Theory of Gauge fields, Princeton Univ. Press, Princeton, NJ, 2002 | MR | Zbl

[5] A. M. Polyakov, Nucl. Phys. B, 120:3 (1977), 429–458 | DOI

[6] N. Seiberg, E. Witten, Nucl. Phys. B, 426:1 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR | Zbl

[7] N. Seiberg, E. Witten, Nucl. Phys. B, 431:3 (1994), 484–550, arXiv: hep-th/9408099 | DOI | MR | Zbl

[8] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[9] M. F. Atiyah, “New invariants of 3- and 4-dimensional manifolds”, The Mathematical Heritage of Herman Weyl (Duke University, Durham, North Carolina, May 12–16, 1987), Proceedings of Symposia in Pure Mathematics, 48, ed. R. O. Wells, Jr., AMS, Providence, RI, 1988, 285–299 | DOI | MR | Zbl

[10] M. A. Semenov-Tyan-Shanskii, Zap. nauchn. sem. LOMI, 37 (1973), 53–65 ; Изв. АН СССР. Сер. матем., 40:3 (1976), 562–592 | MR | Zbl | DOI | MR | Zbl

[11] J. J. Duistermaat, G. J. Heckman, Inv. Math., 69:2 (1982), 259–268 ; 72:1 (1983), 153–158 | DOI | MR | Zbl | DOI | Zbl

[12] A. Hietamhki, A. Yu. Morozov, A. J. Niemi, K. Palo, Phys. Lett. B, 263:3–4 (1991), 417–424 | DOI | MR

[13] M. E. Peskin, D. V. Shreder, Vvedenie v kvantovuyu teoriyu polya, RKhD, M., Izhevsk, 2001 | MR

[14] S.-S. Chern, J. Simons, Ann. Math. (2), 99 (1974), 48–69 | DOI | MR | Zbl

[15] E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[16] L. H. Kauffman, The Interface of Knots and Physics, Proceedings of Symposia in Applied Mathematics, 51, AMS, Providence, RI, 1996 | DOI | MR | Zbl

[17] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, Bull. Amer. Math Soc. (N.S.), 12:2 (1985), 239–246 | DOI | MR | Zbl

[18] J. H. Przytycki, K. P. Traczyk, Kobe J. Math., 4:2 (1987), 115–139 | MR | Zbl

[19] A. Mironov, A. Morozov, AIP Conf. Proc., 1483 (2012), 189–211, arXiv: 1208.2282 | DOI

[20] W. B. R. Lickorish, K. C. Millett, Topology, 26:1 (1987), 107–141 | DOI | MR | Zbl

[21] http://katlas.org/wiki/Main Page

[22] A. Yu. Morozov, A. A. Roslyi, chastnoe soobschenie, 1991

[23] A. Morozov, A. Smirnov, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: 1001.2003 | DOI | MR | Zbl

[24] A. Smirnov, “Notes on Chern–Simons theory in the temporal gauge”, The Most Unexpected at LHC and the Status of High Energy Frontier, Proceedings of the International School of Subnuclear Physics (Erice, Sicily, Italy, 29 August – 7 September, 2009), The Subnuclear Series, 47, ed. A. Zichichi, World Sci., Singapore, 489–498, arXiv: 0910.5011 | MR

[25] D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, TMF, 172:1 (2012), 73–99, arXiv: 1104.2589 | DOI | DOI | MR

[26] R. Kirby, P. Melvin, Invent. Math., 105:3 (1991), 473–545 | DOI | MR | Zbl

[27] M. Alvarez, J. M. F. Labastida, E. Perez, Nucl. Phys. B, 488:3 (1997), 677–718, arXiv: hep-th/9607030 | DOI | MR | Zbl

[28] J. M. F. Labastida, E. Perez, J. Math. Phys., 39:10 (1998), 5183–5198, arXiv: hep-th/9710176 | DOI | MR | Zbl

[29] R. Gopakumar, C. Vafa, Adv. Theor. Math. Phys., 3:5 (1999), 1415–1443, arXiv: hep-th/9811131 | DOI | MR | Zbl

[30] H. Ooguri, C. Vafa, Nucl. Phys. B, 577:3 (2000), 419–438, arXiv: hep-th/9912123 | DOI | MR | Zbl

[31] J. Labastida, M. Mariño, Commun. Math. Phys., 217:2 (2001), 423–449, arXiv: ; A new point of view in the theory of knot and link invariants, arXiv: hep-th/0004196math/0104180 | DOI | MR | Zbl

[32] M. Marino, C. Vafa, “Framed knots at large $N$”, Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemporary Mathematics, 310, AMS, Providence, RI, 2002, 185–204, arXiv: hep-th/0108064 | DOI | MR | Zbl

[33] M. Mariño, “Chern–Simons theory, the $1/N$ expansion, and string theory”, Chern–Simons gauge theory: 20 years after, AMS/IP Studies in Advanced Mathematics, 50, AMS, Providence, RI, 2011, 243–260, arXiv: 1001.2542 | DOI | MR | Zbl

[34] M. Mariño, Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings, arXiv: 1206.6272 | MR

[35] R. K. Kaul, Commun. Math. Phys., 162:2 (1994), 289–319, arXiv: hep-th/9305032 | DOI | MR | Zbl

[36] R. K. Kaul, T. R. Govindarajan, Nucl. Phys. B, 380:1–2 (1992), 293–333, arXiv: hep-th/9111063 | DOI | MR | Zbl

[37] P. Ramadevi, T. R. Govindarajan, R. K. Kaul, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: hep-th/9212110 | DOI | MR

[38] P. Ramadevi, T. R. Govindarajan, R. K. Kaul, Nucl. Phys. B, 422:1–2 (1994), 291–306, arXiv: hep-th/9312215 | DOI | MR | Zbl

[39] P. Ramadevi, T. Sarkar, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: hep-th/0009188 | DOI | MR | Zbl

[40] G. Moore, N. Seiberg, Phys. Lett. B, 220:3 (1989), 422–430 | DOI | MR

[41] V. V. Fock, Ya. I. Kogan, Modern Phys. Lett. A, 5:17 (1990), 1365–1372 | DOI | MR

[42] J. M. F. Labastida, A. V. Ramallo, Phys. Lett. B, 227:1 (1989), 92–102 ; Nucl. Phys. B Proc. Suppl., 16 (1990), 594–596 | DOI | MR | DOI | MR | Zbl

[43] L. Alvarez-Gaumé, C. Gomez, G. Sierra, Phys. Lett. B, 220:1–2 (1989), 142–152 | DOI | MR | Zbl

[44] A. S. Schwarz, Commun. Math. Phys., 67:1 (1979), 1–16 | DOI | MR | Zbl

[45] V. F. R. Jones, Bull. Amer. Math. Soc. (N.S.), 12:1 (1985), 103–111 | DOI | MR | Zbl

[46] V. F. R. Jones, Ann. Math. (2), 126:2 (1987), 335–388 | DOI | MR | Zbl

[47] L. Kauffman, Topology, 26 (1987), 395–407 | DOI | MR | Zbl

[48] P. Borhade, P. Ramadevi, T. Sarkar, Nucl. Phys. B, 678:3 (2004), 656–681, arXiv: hep-th/0306283 | DOI | MR | Zbl

[49] Zodinmawia, P. Ramadevi, Nucl. Phys. B, 870:1 (2013), 205–242, arXiv: 1107.3918 | DOI | MR | Zbl

[50] Zodinmawia, P. Ramadevi, Reformulated invariants for non-torus knots and links, arXiv: 1209.1346

[51] S. Nawata, P. Ramadevi, Zodinmawia, X. Sun, JHEP, 11 (2012), 157, 39 pp., arXiv: 1209.1409 | DOI | MR

[52] S. Nawata, P. Ramadevi, Zodinmawia, Multiplicity-free quantum $6j$-symbols for $U_q(sl_N)$, arXiv: 1302.5143 | MR

[53] S. Nawata, P. Ramadevi, Zodinmawia, Colored HOMFLY polynomials from Chern–Simons theory, arXiv: 1302.5144 | MR

[54] S. Gukov, A. Schwarz, C. Vafa, Lett. Math. Phys., 74:1 (2005), 53–74, arXiv: hep-th/0412243 | DOI | MR | Zbl

[55] N. M. Dunfield, S. Gukov, J. Rasmussen, Experiment. Math., 15:2 (2006), 129–159, arXiv: math/0505662 | DOI | MR | Zbl

[56] E. Gorsky, S. Gukov, M. Stosic, Quadruply-graded colored homology of knots, arXiv: 1304.3481

[57] S. Arthamonov, A. Mironov, A. Morozov, Differential hierarchy and additional grading of knot polynomials, arXiv: 1306.5682 | MR

[58] M. Rosso, V. F. R. Jones, J. Knot Theory Ramifications, 2:1 (1993), 97–112 | DOI | MR | Zbl

[59] X.-S. Lin, H. Zheng, Trans. Amer. Math. Soc., 362:1 (2010), 1–18, arXiv: math/0601267 | DOI | MR | Zbl

[60] S. Stevan, Ann. Henri Poincaré, 11:7 (2010), 1201–1224, arXiv: 1003.2861 | DOI | MR | Zbl

[61] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov, JHEP, 03 (2013), 021, 85 pp., arXiv: 1106.4305 | DOI | MR

[62] M. Aganagic, Sh. Shakirov, Knot homology from refined Chern–Simons theory, arXiv: 1105.5117

[63] M. Aganagic, Sh. Shakirov, Refined Chern–Simons theory and topological string, arXiv: 1210.2733

[64] A. Mironov, A. Morozov, Sh. Shakirov, A. Sleptsov, JHEP, 20 (2012), 70, 12 pp., arXiv: 1201.3339 | DOI

[65] A. Mironov, A. Morozov, Sh. Shakirov, J. Phys. A, 45:35 (2012), 355202, 11 pp., arXiv: 1203.0667 | DOI | MR | Zbl

[66] E. Gorsky, “$q,t$-Catalan numbers and knot homology”, Zeta functions in algebra and geometry (Universitat de les Illes Balears, Palma de Mallorca, Spain, May 3–7, 2010), Contemporary Mathematics, 566, eds. A. Campillo, G. Cardona, A. Melle-Hernandez, W. Veys, W. A. Zuniga-Galindo, AMS, Providence, RI, 2012, 213–232, arXiv: 1003.0916 | DOI | MR | Zbl

[67] I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv: 1111.6195 | MR

[68] A. Oblomkov, J. Rasmussen, V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link, arXiv: 1201.2115 | MR

[69] E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, Torus knots and the rational DAHA, arXiv: 1207.4523 | MR

[70] E. Gorsky, A. Negut, Refined knot invariants and Hilbert schemes, arXiv: 1304.3328 | MR

[71] S. Garoufalidis, “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest, Geometry Topology Monographs, 7, eds. C. Gordon, Y. Rieck, Geom. Topol. Publ., Coventry, UK, 2004, 291–309, arXiv: math/0306230 | DOI | MR | Zbl

[72] A. Brini, B. Eynard, M. Mariño, Ann. Henri Poincaré, 13:8 (2012), 1873–1910, arXiv: 1105.2012 | DOI | MR | Zbl

[73] R. Gelca, Math. Proc. Cambridge Philos. Soc., 133:2 (2002), 311–323, arXiv: math/0004158 | DOI | MR | Zbl

[74] R. Gelca, J. Sain, J. Knot Theory Ramifications, 12:2 (2003), 187–201, arXiv: math/0201100 | DOI | MR | Zbl

[75] S. Gukov, Commun. Math. Phys., 255:3 (2005), 577–627, arXiv: hep-th/0306165 | DOI | MR | Zbl

[76] H. Fuji, S. Gukov, P. Sulkowski, Volume conjecture: refined and categorified, arXiv: 1203.2182

[77] H. Fuji, S. Gukov, M. Stosic, P. Sulkowski, 3d analogs of Argyres–Douglas theories and knot homologies, arXiv: 1209.1416

[78] H. R. Morton, H. J. Ryder, “Mutants and $SU(3,q)$ invariants”, The Epstein Birthday Schrift, Geometry Topology Monographs, 1, eds. I. Rivin, C. Rourke, C. Series, Geom. Topol. Publ., Coventry, UK, 1998, 365–381, arXiv: math/9810197 | DOI | MR | Zbl

[79] H. R. Morton, M. Rampichini, “Mutual braiding and the band presentation of braid groups”, Knots in Hellas' 98, Proceedings of the international conference on knot theory and its ramifications (European Cultural Centre of Delphi, Greece, August 7–15, 1998), Series in Knots and Everything, 24, eds. C. Gordon, V. F. R. Jones, L. H. Kauffman, S. Lambropoulou, J. H. Przytycki, World Sci., Singapore, 2000, 335–346, arXiv: math/9907017 | MR | Zbl

[80] H. R. Morton, R. J. Hadji, Algebr. Geom. Topol., 2 (2002), 11–32, arXiv: math/0106207 | DOI | MR

[81] H. Morton, S. Lukac, J. Knot Theory Ramifications, 12:3 (2003), 395–416, arXiv: math/0108011 | DOI | MR | Zbl

[82] V. G. Turaev, Invent. Math., 92:3 (1988), 527–553 | DOI | MR | Zbl

[83] N. Yu. Reshetikhin, V. G. Turaev, Commun. Math. Phys., 127:1 (1990), 1–26 | DOI | MR | Zbl

[84] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum Groups, Proceedings of the 8th international workshop on mathematical physics (Clausthal, Germany, 19–26 July, 1989), Lecture Notes in Physics, 370, eds. H.-D. Doebner, J.-D. Hennig, Springer, Berlin, 1990, 307–317 | DOI | MR | Zbl

[85] A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials. I. Integrability and difference equations”, Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer, eds. A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, E. Scheidegger, World Sci., Singapore, 2013, 101–118, arXiv: 1112.5754 | MR

[86] A. Mironov, A. Morozov, And. Morozov, JHEP, 03 (2012), 034, 34 pp., arXiv: 1112.2654 | DOI | MR

[87] H. Itoyama, A. Mironov, A.Morozov, And. Morozov, Internat. J. Modern Phys. A, 27:19 (2012), 1250099, 85 pp., arXiv: 1204.4785 | DOI | MR | Zbl

[88] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, JHEP, 07 (2012), 131, 21 pp., arXiv: 1203.5978 | DOI | MR

[89] H. Itoyama, A. Mironov, A.Morozov, And. Morozov, Internat. J. Modern Phys. A, 28:3–4 (2013), 1340009, 81 pp., arXiv: 1209.6304 | DOI | MR | Zbl

[90] A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Nucl. Phys. B, 868:1 (2013), 271–313, arXiv: 1207.0279 | DOI | MR | Zbl

[91] A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Knot polynomials in the first non-symmetric representation, arXiv: 1211.6375 | MR

[92] A. Anokhina, A. Mironov, A. Morozov, And. Morozov, Adv. High Energy Phys., 2013 (2013), 931830, 12 pp., arXiv: 1304.1486 | DOI | MR | Zbl

[93] A. Mironov, A. Morozov, And. Morozov, Evolution method and “differential hierarchy” of colored knot polynomials, arXiv: 1306.3197

[94] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006 | MR | Zbl

[95] A. D. Mironov, A. Yu. Morozov, A. V. Sleptsov, TMF, 177:2 (2013), 179–221, arXiv: 1303.1015 | DOI | Zbl

[96] A. Mironov, A. Morozov, A. Sleptsov, Eur. Phys. J. C, 73 (2013), 2492, 7 pp., arXiv: 1304.7499 | DOI

[97] C. C. Adams, The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots, W. H. Freeman, New York, 1994 | MR | Zbl

[98] A. Anokhina, And. Morozov, Cabling procedure for the colored HOMFLY polynomials, arXiv: 1307.2216 | MR

[99] N. Ya. Vilenkin, A. U. Klimyk, “Predstavleniya grupp Li i spetsialnye funktsii”, Nekommutativnyi garmonicheskii analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 59, VINITI, M., 1990, 145–264 | MR | Zbl

[100] V. V. Prasolov, A. B. Sosinskii, Uzly, zatsepleniya, kosy i trekhmernye mnogoobraziya, MTsNMO, 1997 | MR | Zbl

[101] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, M., Mir, 1985 | MR | Zbl

[102] X.-S. Lin, H. Zheng, Trans. Amer. Math. Soc., 362:1 (2010), 1–18, arXiv: math.QA/0601267 | DOI | MR | Zbl

[103] S. Zhu, Colored HOMFLY polynomial via skein theory, arXiv: 1206.5886

[104] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | DOI | MR

[105] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method recent developments”, Integrable Quantum Field Theories (Tvärminne, Finland, 23–27 March, 1981), Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, 1982, 61–119 | DOI | MR | Zbl

[106] M. Jimbo, T. Miwa, M. Okado, Modern Phys. Lett. B, 1 (1987), 73–79 | DOI | Zbl

[107] A. Morozov, JHEP, 12 (2012), 116, 7 pp., arXiv: 1208.3544 | DOI | MR

[108] A. Morozov, Pisma v ZhETF, 97:4 (2013), 195–196, arXiv: 1211.4596 | DOI | DOI

[109] M. Khovanov, Duke Math. J., 101:3 (2000), 359–426 | DOI | MR | Zbl

[110] D. Bar-Natan, Algebr. Geom. Topol., 2 (2002), 337–370, arXiv: math/0201043 | DOI | MR | Zbl

[111] M. Khovanov, L. Rozhansky, Fund. Math., 199:1 (2008), 1–91, arXiv: math.QA/0401268 | DOI | MR | Zbl

[112] M. Khovanov, L. Rozhansky, Geom. Topol., 12:3 (2008), 1387–1425, arXiv: math.QA/0505056 | DOI | MR | Zbl

[113] N. Carqueville, D. Murfet, Computing Khovanov–Rozansky homology and defect fusion, arXiv: 1108.1081 | MR

[114] V. Dolotin, A. Morozov, JHEP, 01 (2013), 065, 46 pp., arXiv: 1208.4994 | DOI | MR

[115] V. Dolotin, A. Morozov, J. Phys. Conf. Ser., 411:1 (2013), 012013, 46 pp., arXiv: 1209.5109 | DOI | MR