Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 497-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain an exact one-dimensional time-dependent solution for a wave function $\psi(x,t)$ of a particle moving in the presence of a rectangular well or barrier. We present the solution, which holds for both the well and the barrier, in terms of the integrals of elementary functions; it is the sum of forward- and backward-moving components of the wave packet. We consider and numerically visualize the relative contribution of these components and of their interference to the probability density $|\psi(x,t)|^{2}$ and the particle arrival time and dwell time for the narrow and broad energy (momentum) distributions of the initial Gaussian wave packet. We show that in the case of a broad initial wave packet, the quantum mechanical counterintuitive effect of the influence of the backward-moving components on the considered quantities becomes essential.
Keywords: time-dependent Schrödinger equation, rectangular well/barrier potential, backward-moving wave, dwell time, time of arrival.
@article{TMF_2013_177_3_a5,
     author = {V. F. Los and N. V. Los},
     title = {Exact solution of the~one-dimensional time-dependent {Schr\"odinger} equation with a~rectangular well/barrier potential and its applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {497--517},
     year = {2013},
     volume = {177},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a5/}
}
TY  - JOUR
AU  - V. F. Los
AU  - N. V. Los
TI  - Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 497
EP  - 517
VL  - 177
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a5/
LA  - ru
ID  - TMF_2013_177_3_a5
ER  - 
%0 Journal Article
%A V. F. Los
%A N. V. Los
%T Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 497-517
%V 177
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a5/
%G ru
%F TMF_2013_177_3_a5
V. F. Los; N. V. Los. Exact solution of the one-dimensional time-dependent Schrödinger equation with a rectangular well/barrier potential and its applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 497-517. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a5/

[1] A. D. Baute, I. L. Egusquiza, J. G. Muga, J. Phys. A, 34:20 (2001), 4289–4299 | DOI | MR | Zbl

[2] A. D. Baute, I. L. Egusquiza, J. G. Muga, Int. J. Theor. Phys. Group Theory Nonlinear Opt., 8:1 (2002), 1–17, arXiv: quant-ph/0007079 | MR | Zbl

[3] J. G. Muga, R. Sala Mayato, I. L. Egusquiza (eds.), Time in Quantum Mechanics, v. 1, Lecture Notes in Physycs, 734, Springer, Berlin, 2008 ; J. G. Muga, A. Ruschhaupt, A. del Campo (eds.), Time in Quantum Mechanics, v. 2, Lecture Notes in Physycs, 789, Springer, Berlin, 2009 | MR | Zbl | DOI | MR | Zbl

[4] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett., 61:21 (1988), 2472–2475 | DOI

[5] R. Julliere, Phys. Lett. A, 54:3 (1975), 225–226 ; P. LeClair, J. S. Moodera, R. Meservay, J. Appl. Phys., 76:10 (1994), 6546–6548 | DOI | DOI

[6] A. O. Barut, I. H. Duru, Phys. Rev. A, 38:11 (1988), 5906–5909 | DOI

[7] V. F. Los, A. V. Los, J. Phys. A, 43:5 (2010), 055304, 12 pp. | DOI | MR | Zbl

[8] V. F. Los, A. V. Los, J. Phys. A, 44:21 (2011), 215301, 16 pp. | DOI | MR | Zbl

[9] V. F. Los, M. V. Los, J. Phys. A, 45:9 (2012), 095302, 16 pp. | DOI | MR | Zbl

[10] R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR | Zbl

[11] J. G. Muga, S. Brouard, R. F. Snider, Phys. Rev. A, 46:9 (1992), 6075–6078 | DOI

[12] S. Cordero, G. Garcia-Calderón, J. Phys. A, 43:18 (2010), 185301, 18 pp. | DOI | MR | Zbl

[13] G. R. Allcock, Ann. Phys. (N. Y.), 53:2 (1969), 253–285 ; 286–310 ; 311–348 | DOI | DOI | DOI

[14] J. G. Muga, C. R. Leavens, Phys. Rep., 338:4 (2000), 353–438 | DOI | MR

[15] M. Buttiker, Phys. Rev. B, 27:10 (1983), 6178–6188 | DOI

[16] E. A. Galapon, Phys. Rev. Lett., 108:17 (2012), 170402, 5 pp. | DOI