Spectral properties of a two-particle Hamiltonian on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 482-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a system of two arbitrary quantum particles on a three-dimensional lattice with some dispersion functions (describing particle transport from a site to a neighboring site). The particles interact via an attractive potential at only the nearest-neighbor sites. We study how the number of eigenvalues of a family of operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T^3$, where $\mathbb T^3$ is a three-dimensional torus. We find the conditions under which the operator $h(\mathbf 0)$ has a double or triple virtual level at zero depending on the particle interaction energy.
Keywords: two-particle Hamiltonian on a lattice, virtual level, virtual-level multiplicity, eigenvalue, positive operator.
@article{TMF_2013_177_3_a4,
     author = {M. I. Muminov and A. M. Hurramov},
     title = {Spectral properties of a~two-particle {Hamiltonian} on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {482--496},
     year = {2013},
     volume = {177},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a4/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - A. M. Hurramov
TI  - Spectral properties of a two-particle Hamiltonian on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 482
EP  - 496
VL  - 177
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a4/
LA  - ru
ID  - TMF_2013_177_3_a4
ER  - 
%0 Journal Article
%A M. I. Muminov
%A A. M. Hurramov
%T Spectral properties of a two-particle Hamiltonian on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 482-496
%V 177
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a4/
%G ru
%F TMF_2013_177_3_a4
M. I. Muminov; A. M. Hurramov. Spectral properties of a two-particle Hamiltonian on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 482-496. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a4/

[1] L. D. Faddeev, Tr. MIAN SSSR, 69 (1963), 1–125 | MR | Zbl

[2] D. C. Mattis, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR

[3] S. Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov, Commun. Math. Phys., 262:1 (2006), 91–115, arXiv: math-ph/0501013 | DOI | MR | Zbl

[4] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[5] A. V. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[6] D. R. Yafaev, TMF, 25:2 (1975), 185–195 | DOI | MR | Zbl

[7] S. A. Vugalter, G. M. Zhislin, Tr. MMO, 49 (1986), 95–112 | MR

[8] G. M. Zhislin, TMF, 68:2 (1986), 265–275 | DOI | MR

[9] S. N. Lakaev, Sh. M. Tilavova, TMF, 101:2 (1994), 235–252 | DOI | MR | Zbl

[10] Zh. I. Abdullaev, S. N. Lakaev, TMF, 111:1 (1997), 94–108 | DOI | DOI | MR | Zbl

[11] S. N. Lakaev, I. N. Bozorov, TMF, 158:3 (2009), 425–443 | DOI | DOI | MR | Zbl

[12] E. L. Lakshtanov, R. A. Minlos, Funkts. analiz i ego pril., 38:3 (2004), 52–69 | DOI | DOI | MR | Zbl

[13] E. L. Lakshtanov, R. A. Minlos, Funkts. analiz i ego pril., 39:1 (2005), 39–55 | DOI | DOI | MR | Zbl

[14] P. A. Faria da Veiga, L. Ioriatti, M. O'Carroll, Phys. Rev. E, 66 (2002), 016130, 9 pp. | DOI | MR

[15] M. E. Muminov, TMF, 153:3 (2007), 381–387 | DOI | DOI | MR | Zbl

[16] S. N. Lakaev, A. M. Khalkhuzhaev, TMF, 158:2 (2009), 263–276 | DOI | DOI | MR | Zbl

[17] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | DOI | MR

[18] S. N. Lakaev, M. E. Muminov, TMF, 135:3 (2003), 478–503 | DOI | DOI | MR | Zbl

[19] M. E. Muminov, TMF, 159:2 (2009), 299–317 | DOI | DOI | MR | Zbl

[20] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[21] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Iz-vo LGU, L., 1980 | MR