Keywords: asymptotic expansion, conservation law, symmetry, equations on a quad graph, discrete nonlinear Schrödinger equation, dressing method.
@article{TMF_2013_177_3_a2,
author = {I. T. Habibullin and M. V. Yangubaeva},
title = {Formal diagonalization of a~discrete {Lax} operator and conservation laws and symmetries of dynamical systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {441--467},
year = {2013},
volume = {177},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/}
}
TY - JOUR AU - I. T. Habibullin AU - M. V. Yangubaeva TI - Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 441 EP - 467 VL - 177 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/ LA - ru ID - TMF_2013_177_3_a2 ER -
%0 Journal Article %A I. T. Habibullin %A M. V. Yangubaeva %T Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 441-467 %V 177 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/ %G ru %F TMF_2013_177_3_a2
I. T. Habibullin; M. V. Yangubaeva. Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 441-467. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/
[1] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, LKI, M., 2010 | MR | Zbl
[2] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | Zbl
[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl
[4] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[5] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl | Zbl
[6] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl
[7] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[8] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl
[9] V. Caudrelier, Internat. J. Geom. Methods Mod. Phys., 5:7 (2008), 1085–1108 | DOI | MR | Zbl
[10] I. Habibullin, A. Kundu, Nucl. Phys. B, 795:3 (2008), 549–568, arXiv: 0709.4611 | DOI | MR | Zbl
[11] D. J. Zhang, J. W. Cheng, Y. Y. Sun, Deriving conservation laws for ABS lattice equations from Lax pairs, arXiv: 1210.3454 | MR
[12] J. W. Cheng, D. J. Zhang, Conservation laws of some lattice equations, arXiv: 1212.2319 | MR
[13] A. V. Mikhailov (Moskva, MGU, 30 oktyabrya –2 noyabrya 2012) http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934
[14] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “A quad graph equation with nonstandard generalized symmetry structure” (to appear)
[15] I. T. Khabibullin, Zap. nauchn. sem. LOMI, 146 (1985), 137–146 | MR | Zbl
[16] A. B. Shabat, “Nelineinye uravneniya i zadacha Rimana”, Trudy Vsesoyuznoi konferentsii po uravneniyam c chastnymi proizvodnymi, posvyaschennaya 75-letiyu so dnya rozhdeniya akademika I. G. Petrovskogo, Izd-vo Moskovsk. un-ta, M., 1978, 242–245 | Zbl
[17] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR | Zbl
[18] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4(256) (1987), 3–53 | MR | Zbl
[19] A. V. Mikhailov (Isaac Newton Institute for Mathematical Sciences, Cambridge, 17 June 2009) http://www.newton.ac.uk/programmes/DIS/seminars/2009061714001.html
[20] R. N. Garifullin, I. T. Habibullin, M. V. Yangubaeva, SIGMA, 8 (2012), 062, 33 pp. | MR | Zbl
[21] H. D. Wahlquist, F. B. Estabrook, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR
[22] A. G. Rasin, J. Phys. A, 43:23, 235201, 12 pp., arXiv: 1001.0724 | DOI | MR | Zbl
[23] A. V. Mikhailov, Dzh. P. Vang, P. Ksenitidis, TMF, 167:1 (2011), 23–49 | DOI | DOI | MR | Zbl
[24] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, Phys. Lett. A, 97:4 (1983), 125–128 | DOI | MR
[25] D. Levi, R. I. Yamilov, J. Phys. A, 42:45 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl
[26] M. Toda, Proc. Theor. Phys. Suppl., 45 (1970), 174–200 | DOI
[27] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl
[28] A. Shabat, Inverse Problems, 8:2 (1992), 303–308 | DOI | MR | Zbl
[29] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | DOI | MR | Zbl
[30] M. J. Ablowitz, M. J. Ladik, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl
[31] F. Pempinelli, M. Boiti, J. Leon, “Bäcklund and Darboux transformation for the Ablowitz–Ladik spectral problem”, Nonlinear Physics: Theory and Experiment (Lecce, Italy, June 29 – July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci. Publ, Singapore, 1996, 261–268 | MR | Zbl
[32] S. V. Manakov, ZhETF, 65:10 (1973), 505–516