Formal diagonalization of a~discrete Lax operator and conservation laws and symmetries of dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 441-467

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing a formal asymptotic expansion in the spectral parameter for an eigenfunction of a discrete linear operator. We propose a method for constructing an expansion that allows obtaining conservation laws of discrete dynamical systems associated with a given linear operator. As illustrative examples, we consider known nonlinear models such as the discrete potential Korteweg–de Vries equation, the discrete version of the derivative nonlinear Schrödinger equation, the Veselov–Shabat dressing chain, and others. We describe the infinite set of conservation laws for the discrete Toda chain corresponding to the Lie algebra $A_1^{(1)}$. We find new examples of integrable systems of equations on a square lattice.
Mots-clés : Lax pair
Keywords: asymptotic expansion, conservation law, symmetry, equations on a quad graph, discrete nonlinear Schrödinger equation, dressing method.
@article{TMF_2013_177_3_a2,
     author = {I. T. Habibullin and M. V. Yangubaeva},
     title = {Formal diagonalization of a~discrete {Lax} operator and conservation laws and symmetries of dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--467},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - M. V. Yangubaeva
TI  - Formal diagonalization of a~discrete Lax operator and conservation laws and symmetries of dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 441
EP  - 467
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/
LA  - ru
ID  - TMF_2013_177_3_a2
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A M. V. Yangubaeva
%T Formal diagonalization of a~discrete Lax operator and conservation laws and symmetries of dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 441-467
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/
%G ru
%F TMF_2013_177_3_a2
I. T. Habibullin; M. V. Yangubaeva. Formal diagonalization of a~discrete Lax operator and conservation laws and symmetries of dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 441-467. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/