Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 441-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of constructing a formal asymptotic expansion in the spectral parameter for an eigenfunction of a discrete linear operator. We propose a method for constructing an expansion that allows obtaining conservation laws of discrete dynamical systems associated with a given linear operator. As illustrative examples, we consider known nonlinear models such as the discrete potential Korteweg–de Vries equation, the discrete version of the derivative nonlinear Schrödinger equation, the Veselov–Shabat dressing chain, and others. We describe the infinite set of conservation laws for the discrete Toda chain corresponding to the Lie algebra $A_1^{(1)}$. We find new examples of integrable systems of equations on a square lattice.
Mots-clés : Lax pair
Keywords: asymptotic expansion, conservation law, symmetry, equations on a quad graph, discrete nonlinear Schrödinger equation, dressing method.
@article{TMF_2013_177_3_a2,
     author = {I. T. Habibullin and M. V. Yangubaeva},
     title = {Formal diagonalization of a~discrete {Lax} operator and conservation laws and symmetries of dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--467},
     year = {2013},
     volume = {177},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - M. V. Yangubaeva
TI  - Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 441
EP  - 467
VL  - 177
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/
LA  - ru
ID  - TMF_2013_177_3_a2
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A M. V. Yangubaeva
%T Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 441-467
%V 177
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/
%G ru
%F TMF_2013_177_3_a2
I. T. Habibullin; M. V. Yangubaeva. Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 441-467. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a2/

[1] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, LKI, M., 2010 | MR | Zbl

[2] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | Zbl

[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl

[4] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[5] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | MR | Zbl | Zbl

[6] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[7] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[8] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 81–180 | DOI | MR | Zbl

[9] V. Caudrelier, Internat. J. Geom. Methods Mod. Phys., 5:7 (2008), 1085–1108 | DOI | MR | Zbl

[10] I. Habibullin, A. Kundu, Nucl. Phys. B, 795:3 (2008), 549–568, arXiv: 0709.4611 | DOI | MR | Zbl

[11] D. J. Zhang, J. W. Cheng, Y. Y. Sun, Deriving conservation laws for ABS lattice equations from Lax pairs, arXiv: 1210.3454 | MR

[12] J. W. Cheng, D. J. Zhang, Conservation laws of some lattice equations, arXiv: 1212.2319 | MR

[13] A. V. Mikhailov (Moskva, MGU, 30 oktyabrya –2 noyabrya 2012) http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934

[14] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “A quad graph equation with nonstandard generalized symmetry structure” (to appear)

[15] I. T. Khabibullin, Zap. nauchn. sem. LOMI, 146 (1985), 137–146 | MR | Zbl

[16] A. B. Shabat, “Nelineinye uravneniya i zadacha Rimana”, Trudy Vsesoyuznoi konferentsii po uravneniyam c chastnymi proizvodnymi, posvyaschennaya 75-letiyu so dnya rozhdeniya akademika I. G. Petrovskogo, Izd-vo Moskovsk. un-ta, M., 1978, 242–245 | Zbl

[17] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR | Zbl

[18] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4(256) (1987), 3–53 | MR | Zbl

[19] A. V. Mikhailov (Isaac Newton Institute for Mathematical Sciences, Cambridge, 17 June 2009) http://www.newton.ac.uk/programmes/DIS/seminars/2009061714001.html

[20] R. N. Garifullin, I. T. Habibullin, M. V. Yangubaeva, SIGMA, 8 (2012), 062, 33 pp. | MR | Zbl

[21] H. D. Wahlquist, F. B. Estabrook, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR

[22] A. G. Rasin, J. Phys. A, 43:23, 235201, 12 pp., arXiv: 1001.0724 | DOI | MR | Zbl

[23] A. V. Mikhailov, Dzh. P. Vang, P. Ksenitidis, TMF, 167:1 (2011), 23–49 | DOI | DOI | MR | Zbl

[24] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, Phys. Lett. A, 97:4 (1983), 125–128 | DOI | MR

[25] D. Levi, R. I. Yamilov, J. Phys. A, 42:45 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl

[26] M. Toda, Proc. Theor. Phys. Suppl., 45 (1970), 174–200 | DOI

[27] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl

[28] A. Shabat, Inverse Problems, 8:2 (1992), 303–308 | DOI | MR | Zbl

[29] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | DOI | MR | Zbl

[30] M. J. Ablowitz, M. J. Ladik, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl

[31] F. Pempinelli, M. Boiti, J. Leon, “Bäcklund and Darboux transformation for the Ablowitz–Ladik spectral problem”, Nonlinear Physics: Theory and Experiment (Lecce, Italy, June 29 – July 7, 1995), eds. E. Alfinito, M. Boiti, L. Martina, F. Pempinelli, World Sci. Publ, Singapore, 1996, 261–268 | MR | Zbl

[32] S. V. Manakov, ZhETF, 65:10 (1973), 505–516