Darboux transformations and recursion operators for differential--difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440

Voir la notice de l'article provenant de la source Math-Net.Ru

We review two concepts directly related to the Lax representations of integrable systems: Darboux transformations and recursion operators. We present an extensive list of integrable differential–difference equations with their Hamiltonian structures, recursion operators, nontrivial generalized symmetries, and Darboux–Lax representations. The new results include multi-Hamiltonian structures and recursion operators for integrable Volterra-type equations and integrable discretizations of derivative nonlinear Schrödinger equations such as the Kaup–Newell, Chen–Lee–Liu, and Ablowitz–Ramani–Segur (Gerdjikov–Ivanov) lattices. We also compute the weakly nonlocal inverse recursion operators.
Keywords: symmetry, recursion operator, bi-Hamiltonian structure, Lax representation, integrable equation.
Mots-clés : Darboux transformation
@article{TMF_2013_177_3_a1,
     author = {F. Khanizadeh and A. V. Mikhailov and Jing Ping Wang},
     title = {Darboux transformations and recursion operators for differential--difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--440},
     publisher = {mathdoc},
     volume = {177},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/}
}
TY  - JOUR
AU  - F. Khanizadeh
AU  - A. V. Mikhailov
AU  - Jing Ping Wang
TI  - Darboux transformations and recursion operators for differential--difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 387
EP  - 440
VL  - 177
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/
LA  - ru
ID  - TMF_2013_177_3_a1
ER  - 
%0 Journal Article
%A F. Khanizadeh
%A A. V. Mikhailov
%A Jing Ping Wang
%T Darboux transformations and recursion operators for differential--difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 387-440
%V 177
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/
%G ru
%F TMF_2013_177_3_a1
F. Khanizadeh; A. V. Mikhailov; Jing Ping Wang. Darboux transformations and recursion operators for differential--difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/