Mots-clés : Darboux transformation
@article{TMF_2013_177_3_a1,
author = {F. Khanizadeh and A. V. Mikhailov and Jing Ping Wang},
title = {Darboux transformations and recursion operators for differential{\textendash}difference equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--440},
year = {2013},
volume = {177},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/}
}
TY - JOUR AU - F. Khanizadeh AU - A. V. Mikhailov AU - Jing Ping Wang TI - Darboux transformations and recursion operators for differential–difference equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 387 EP - 440 VL - 177 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/ LA - ru ID - TMF_2013_177_3_a1 ER -
%0 Journal Article %A F. Khanizadeh %A A. V. Mikhailov %A Jing Ping Wang %T Darboux transformations and recursion operators for differential–difference equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 387-440 %V 177 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/ %G ru %F TMF_2013_177_3_a1
F. Khanizadeh; A. V. Mikhailov; Jing Ping Wang. Darboux transformations and recursion operators for differential–difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/
[1] H. D. Wahlquist, F. B. Estabrook, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR
[2] S. Lombardo, A. V. Mikhailov, J. Phys. A, 37:31 (2004), 7727–7742, arXiv: nlin/0404013 | DOI | MR | Zbl
[3] S. Lombardo, A. V. Mikhailov, Commun. Math. Phys., 258:1 (2005), 179–202, arXiv: math-ph/0407048 | DOI | MR | Zbl
[4] S. Lombardo, Reductions of integrable equations and automorphic Lie algebra, PhD Thesis, University of Leeds, Leeds, 2004 | MR
[5] R. T. Bury, Automorphic Lie algebras, corresponding integrable systems and their soliton solutions, PhD Thesis, University of Leeds, Leeds, 2010
[6] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448
[7] A. V. Mikhailov, Pisma v ZhETF, 32:2 (1980), 187–192
[8] A. V. Mikhailov, Phys. D, 3:1–2 (1981), 73–117 | DOI | Zbl
[9] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | MR
[10] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 | MR
[11] A. V. Mikhailov, J. P. Wang, P. Xenitidis, Nonlinearity, 24:7 (2011), 2079–2097 ; arXiv: 1009.2403 | DOI | MR | Zbl
[12] A. Ya. Maltsev, S. P. Novikov, Phys. D, 156:1–2 (2001), 53–80 | DOI | MR | Zbl
[13] J. P. Wang, Stud. Appl. Math., 129:3 (2012), 309–327 | DOI | MR | Zbl
[14] E. K. Sklyanin, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl
[15] H. Zhang, G.-Z. Tu, W. Oevel, B. Fuchssteiner, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR | Zbl
[16] J.-P. Wang, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 213–233 | DOI | MR
[17] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[18] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl
[19] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[20] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl
[21] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, Commun. Math. Phys., 115:1 (1988), 1–19 | DOI | MR
[22] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl
[23] J. A. Sanders, J. P. Wang, J. Diff. Eq., 147:2 (1998), 410–434 | DOI | MR | Zbl
[24] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1971), 118–134 | MR
[25] M. Gürses, A. Karasu, V. V. Sokolov from {L}ax representation, J. Math. Phys., 40:12 (1999), 6473–6490 | DOI | MR
[26] V. E. Adler, Klassifikatsiya diskretnykh integriruemykh uravnenii, Diss. \ldots doktora fiz.-matem. nauk, In-t teoret. fiziki im. L. D. Landau RAN, Chernogolovka, 2010
[27] J. L. Cieśliński, J. Phys. A, 42:40 (2009), 404003, 40 pp. | DOI | MR | Zbl
[28] S. Konstantinou-Rizos, A. V. Mikhailov, P. Xenitidis, “Reduction groups and related integrable difference systems of the {N}{L}{S} type”, J. Math. Phys., 2013 (to appear) | MR
[29] D. Zhang, D. Chen, J. Phys. A, 35:33 (2002), 7225–7241 | DOI | MR | Zbl
[30] D. K. Demskoi, V. V. Sokolov, Nonlinearity, 21:6 (2008), 1253–1264, arXiv: nlin/0607071 | DOI | MR | Zbl
[31] J. P. Wang, J. Math. Phys., 50:2 (2009), 023506, 25 pp., arXiv: 0809.3899 | DOI | MR | Zbl
[32] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, SIGMA, 7 (2011), 096, 48 pp., arXiv: 1108.3990 | DOI | MR | Zbl
[33] A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento (2), 28:8 (1980), 299–303 | DOI | MR
[34] P. J. Olver, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR | Zbl
[35] A. V. Mikhailov, Dzh. P. Vang, P. Ksenitidis, TMF, 167:1 (2011), 23–49, arXiv: 1004.5346 | DOI | DOI | MR | Zbl
[36] B. A. Kupershmidt, Astérisque, 123 (1985), 21 pp. | MR | Zbl
[37] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations. Nonlinear Science: Theory and Applications, John Wiley and Sons, Chichester, 1993 | MR
[38] A. De Sole, V. G. Kač, Non-local Poisson structures and applications to the theory of integrable systems, arXiv: 1302.0148 | MR
[39] I. Cherdantsev, R. Yamilov, “Local master symmetries of differential-difference equations”, Symmetries and Integrability of Difference Equations (Estérel, Québec, May 1994), CRM Proceedings and Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, Providence, RI, 1996, 51–61 | DOI | MR
[40] B. Fuchssteiner, W.-X. Ma, “An approach to master symmetries of lattice equations”, Symmetries and Integrability of Difference Equations (Canterbury, 1996), London Mathematical Society Lecture Note Series, 255, eds. P. A. Clarkson, F. W. Nijhoff, Cambridge Univ. Press, Cambridge, 1999, 247–260 | DOI | MR | Zbl
[41] W. Oevel, H. Zhang, B. Fuchssteiner, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR
[42] I. Yu. Cherdantsev, R. I. Yamilov, Phys. D, 87:1–4 (1995), 140–144 | DOI | MR | Zbl
[43] R. I. Yamilov, J. Phys. A, 39:45 (2006), R541–R623 | DOI | MR | Zbl
[44] D. Levi, O. Ragnisco, Lett. Nuovo Cimento (2), 22:17 (1978), 691–696 | DOI | MR
[45] O. I. Bogoyavlensky, Phys. Lett. A, 134:1 (1988), 34–38 | DOI | MR
[46] S. V. Manakov, ZhETF, 67:2 (1974), 543-555 | MR
[47] R. Hirota, J. Phys. Soc. Japan, 35:1 (1973), 289–294 | DOI | MR
[48] T. Tsuchida, M. Wadati, Chaos, Solitons Fractals, 9:6 (1998), 869–873 | DOI | MR | Zbl
[49] R. I. Yamilov, UMN, 38:6(234) (1983), 153–160
[50] A. Tongas, D. Tsoubelis, P. Xenitidis, J. Phys. A, 40:44 (2007), 13353–13384, arXiv: 0707.3730 | DOI | MR | Zbl
[51] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proceedings of the 4th International Workshop in Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, 26–30 October 2008), 226–242 , arXiv: http://www2.ucy.ac.cy/<nobr>$\sim$</nobr>symmetry/Proceedings2008.pdf0902.3954 | MR | Zbl
[52] A. B. Shabat, R. I. Yamilov, Phys. Lett. A, 130:4–5 (1988), 271–275 | DOI | MR
[53] A. V. Mikhailov, J. P. Wang, Phys. Lett. A, 375:45 (2011), 3960–3963, arXiv: 1105.1269 | DOI | MR | Zbl
[54] K. Narita, J. Math. Soc. Japan, 51:5 (1982), 1682–1685 | MR
[55] Y. Itoh, Progr. Theor. Phys., 78:3 (1987), 507–510 | DOI | MR
[56] A. K. Svinin, J. Phys. A, 42:45 (2009), 454021, 15 pp., arXiv: 0902.4517 | DOI | MR | Zbl
[57] A. K. Svinin, J. Phys. A, 44:16 (2011), 165206, 16 pp., arXiv: 1101.3808 | DOI | MR | Zbl
[58] V. É. Adler, On a discrete analog of the Tzitzeica equation, arXiv: 1103.5139
[59] V. É. Adler, V. V. Postnikov, Differential-difference equations associated with the fractional {L}ax operators, arXiv: 1107.2305 | MR
[60] M. Toda, J. Phys. Soc. Japan, 23:3 (1967), 501–506 | DOI
[61] H. Flaschka, Phys. Rev. B (3), 9:4 (1974), 1924–1925 | DOI | MR | Zbl
[62] R. Hirota, J. Phys. Soc. Japan, 35:1 (1973), 286–288 | DOI | MR
[63] S. N. M. Ruijsenaars, Commun. Math. Phys., 133:2 (1990), 217–247 | DOI | MR | Zbl
[64] Y. B. Suris, J. Phys. A, 30:5 (1997), 1745–1761 | DOI | MR | Zbl
[65] W. Oevel, B. Fuchssteiner, H. Zhang, O. Ragnisco, J. Math. Phys., 30:11 (1989), 2664–2670 | DOI | MR | Zbl
[66] Yu. B. Suris, Rev. Math. Phys., 11:6 (1999), 727–822 | DOI | MR | Zbl
[67] Y. B. Suris, O. Ragnisco, Commun. Math. Phys., 200:2 (1999), 445–485 | DOI | MR | Zbl
[68] I. Merola, O. Ragnisco, G.-Z. Tu, Inverse Probl., 10:6 (1994), 1315–1334 | DOI | MR | Zbl
[69] V. É. Adler, R. I. Yamilov, J. Phys. A, 27:2 (1994), 477–492 | DOI | MR | Zbl
[70] M. J. Ablowitz, J. F. Ladik, J. Math. Phys., 17:6 (1976), 1011–1018 | DOI | MR | Zbl
[71] W. Hereman, J. A. Sanders, J. Sayers, J. P. Wang, “Symbolic computation of polynomial conserved densities, generalized symmetries, and recursion operators for nonlinear differential-difference equations”, Group Theory and Numerical Analysis, CRM Proceedings and Lecture Notes, 39, eds. P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi, P. J. Olver, R. Quispel, P. Tempesta, AMS, Providence, RI, 2005, 133–148 | DOI | MR | Zbl
[72] Ü. Göktaş, W. Hereman, Math. Computat. Appl., 16:1 (2011), 1–12 | MR
[73] M. Bruschi, O. Ragnisco, Inverse Problems, 5:6 (1989), 983–998 | DOI | MR | Zbl
[74] T. Tsuchida, J. Phys. A, 35:36 (2002), 7827–7847, arXiv: nlin/0105053 | DOI | MR | Zbl
[75] V. E. Adler, TMF, 124:1 (2000), 48–61 | DOI | DOI | MR | Zbl
[76] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl
[77] A. A. Belov, K. D. Chaltikian, Phys. Lett. B, 317:1–2 (1993), 64–72, arXiv: hep-th/9305096 | DOI | MR | Zbl
[78] R. Sahadevan, S. Khousalya, J. Math. Anal. Appl., 280:2 (2003), 241–251 | DOI | MR | Zbl
[79] K. Hikami, R. Inoue, J. Phys. A, 30:19 (1997), 6911–6924 | DOI | MR | Zbl
[80] G. M. Beffa, J. P. Wang, Hamiltonian evolutions of twisted gons in $\mathbb{RP}^n$, arXiv: 1207.6524
[81] M. Blaszak, K. Marciniak, J. Math. Phys., 35:9 (1994), 4661–4682 | DOI | MR | Zbl
[82] V. É. Adler, A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 233:3 (2003), 513–543, arXiv: nlin/0202024 | DOI | MR | Zbl
[83] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Funkts. analiz i ego pril., 43:1 (2009), 3–21 | DOI | DOI | MR | Zbl
[84] D. Levi, R. I. Yamilov, J. Phys. A, 44:14 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR | Zbl