Darboux transformations and recursion operators for differential–difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review two concepts directly related to the Lax representations of integrable systems: Darboux transformations and recursion operators. We present an extensive list of integrable differential–difference equations with their Hamiltonian structures, recursion operators, nontrivial generalized symmetries, and Darboux–Lax representations. The new results include multi-Hamiltonian structures and recursion operators for integrable Volterra-type equations and integrable discretizations of derivative nonlinear Schrödinger equations such as the Kaup–Newell, Chen–Lee–Liu, and Ablowitz–Ramani–Segur (Gerdjikov–Ivanov) lattices. We also compute the weakly nonlocal inverse recursion operators.
Keywords: symmetry, recursion operator, bi-Hamiltonian structure, Lax representation, integrable equation.
Mots-clés : Darboux transformation
@article{TMF_2013_177_3_a1,
     author = {F. Khanizadeh and A. V. Mikhailov and Jing Ping Wang},
     title = {Darboux transformations and recursion operators for differential{\textendash}difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--440},
     year = {2013},
     volume = {177},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/}
}
TY  - JOUR
AU  - F. Khanizadeh
AU  - A. V. Mikhailov
AU  - Jing Ping Wang
TI  - Darboux transformations and recursion operators for differential–difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 387
EP  - 440
VL  - 177
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/
LA  - ru
ID  - TMF_2013_177_3_a1
ER  - 
%0 Journal Article
%A F. Khanizadeh
%A A. V. Mikhailov
%A Jing Ping Wang
%T Darboux transformations and recursion operators for differential–difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 387-440
%V 177
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/
%G ru
%F TMF_2013_177_3_a1
F. Khanizadeh; A. V. Mikhailov; Jing Ping Wang. Darboux transformations and recursion operators for differential–difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/

[1] H. D. Wahlquist, F. B. Estabrook, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR

[2] S. Lombardo, A. V. Mikhailov, J. Phys. A, 37:31 (2004), 7727–7742, arXiv: nlin/0404013 | DOI | MR | Zbl

[3] S. Lombardo, A. V. Mikhailov, Commun. Math. Phys., 258:1 (2005), 179–202, arXiv: math-ph/0407048 | DOI | MR | Zbl

[4] S. Lombardo, Reductions of integrable equations and automorphic Lie algebra, PhD Thesis, University of Leeds, Leeds, 2004 | MR

[5] R. T. Bury, Automorphic Lie algebras, corresponding integrable systems and their soliton solutions, PhD Thesis, University of Leeds, Leeds, 2010

[6] A. V. Mikhailov, Pisma v ZhETF, 30:7 (1979), 443–448

[7] A. V. Mikhailov, Pisma v ZhETF, 32:2 (1980), 187–192

[8] A. V. Mikhailov, Phys. D, 3:1–2 (1981), 73–117 | DOI | Zbl

[9] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | MR

[10] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthier-Villars, Paris, 1931 | MR

[11] A. V. Mikhailov, J. P. Wang, P. Xenitidis, Nonlinearity, 24:7 (2011), 2079–2097 ; arXiv: 1009.2403 | DOI | MR | Zbl

[12] A. Ya. Maltsev, S. P. Novikov, Phys. D, 156:1–2 (2001), 53–80 | DOI | MR | Zbl

[13] J. P. Wang, Stud. Appl. Math., 129:3 (2012), 309–327 | DOI | MR | Zbl

[14] E. K. Sklyanin, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl

[15] H. Zhang, G.-Z. Tu, W. Oevel, B. Fuchssteiner, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR | Zbl

[16] J.-P. Wang, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 213–233 | DOI | MR

[17] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[18] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | MR | Zbl

[19] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[20] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, ed. V. E. Zakharov, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[21] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, Commun. Math. Phys., 115:1 (1988), 1–19 | DOI | MR

[22] V. E. Adler, A. B. Shabat, R. I. Yamilov, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[23] J. A. Sanders, J. P. Wang, J. Diff. Eq., 147:2 (1998), 410–434 | DOI | MR | Zbl

[24] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1971), 118–134 | MR

[25] M. Gürses, A. Karasu, V. V. Sokolov from {L}ax representation, J. Math. Phys., 40:12 (1999), 6473–6490 | DOI | MR

[26] V. E. Adler, Klassifikatsiya diskretnykh integriruemykh uravnenii, Diss. \ldots doktora fiz.-matem. nauk, In-t teoret. fiziki im. L. D. Landau RAN, Chernogolovka, 2010

[27] J. L. Cieśliński, J. Phys. A, 42:40 (2009), 404003, 40 pp. | DOI | MR | Zbl

[28] S. Konstantinou-Rizos, A. V. Mikhailov, P. Xenitidis, “Reduction groups and related integrable difference systems of the {N}{L}{S} type”, J. Math. Phys., 2013 (to appear) | MR

[29] D. Zhang, D. Chen, J. Phys. A, 35:33 (2002), 7225–7241 | DOI | MR | Zbl

[30] D. K. Demskoi, V. V. Sokolov, Nonlinearity, 21:6 (2008), 1253–1264, arXiv: nlin/0607071 | DOI | MR | Zbl

[31] J. P. Wang, J. Math. Phys., 50:2 (2009), 023506, 25 pp., arXiv: 0809.3899 | DOI | MR | Zbl

[32] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, SIGMA, 7 (2011), 096, 48 pp., arXiv: 1108.3990 | DOI | MR | Zbl

[33] A. S. Fokas, B. Fuchssteiner, Lett. Nuovo Cimento (2), 28:8 (1980), 299–303 | DOI | MR

[34] P. J. Olver, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR | Zbl

[35] A. V. Mikhailov, Dzh. P. Vang, P. Ksenitidis, TMF, 167:1 (2011), 23–49, arXiv: 1004.5346 | DOI | DOI | MR | Zbl

[36] B. A. Kupershmidt, Astérisque, 123 (1985), 21 pp. | MR | Zbl

[37] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations. Nonlinear Science: Theory and Applications, John Wiley and Sons, Chichester, 1993 | MR

[38] A. De Sole, V. G. Kač, Non-local Poisson structures and applications to the theory of integrable systems, arXiv: 1302.0148 | MR

[39] I. Cherdantsev, R. Yamilov, “Local master symmetries of differential-difference equations”, Symmetries and Integrability of Difference Equations (Estérel, Québec, May 1994), CRM Proceedings and Lecture Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, AMS, Providence, RI, 1996, 51–61 | DOI | MR

[40] B. Fuchssteiner, W.-X. Ma, “An approach to master symmetries of lattice equations”, Symmetries and Integrability of Difference Equations (Canterbury, 1996), London Mathematical Society Lecture Note Series, 255, eds. P. A. Clarkson, F. W. Nijhoff, Cambridge Univ. Press, Cambridge, 1999, 247–260 | DOI | MR | Zbl

[41] W. Oevel, H. Zhang, B. Fuchssteiner, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR

[42] I. Yu. Cherdantsev, R. I. Yamilov, Phys. D, 87:1–4 (1995), 140–144 | DOI | MR | Zbl

[43] R. I. Yamilov, J. Phys. A, 39:45 (2006), R541–R623 | DOI | MR | Zbl

[44] D. Levi, O. Ragnisco, Lett. Nuovo Cimento (2), 22:17 (1978), 691–696 | DOI | MR

[45] O. I. Bogoyavlensky, Phys. Lett. A, 134:1 (1988), 34–38 | DOI | MR

[46] S. V. Manakov, ZhETF, 67:2 (1974), 543-555 | MR

[47] R. Hirota, J. Phys. Soc. Japan, 35:1 (1973), 289–294 | DOI | MR

[48] T. Tsuchida, M. Wadati, Chaos, Solitons Fractals, 9:6 (1998), 869–873 | DOI | MR | Zbl

[49] R. I. Yamilov, UMN, 38:6(234) (1983), 153–160

[50] A. Tongas, D. Tsoubelis, P. Xenitidis, J. Phys. A, 40:44 (2007), 13353–13384, arXiv: 0707.3730 | DOI | MR | Zbl

[51] P. Xenitidis, “Integrability and symmetries of difference equations: the Adler–Bobenko–Suris case”, Proceedings of the 4th International Workshop in Group Analysis of Differential Equations and Integrable Systems (Protaras, Cyprus, 26–30 October 2008), 226–242 , arXiv: http://www2.ucy.ac.cy/<nobr>$\sim$</nobr>symmetry/Proceedings2008.pdf0902.3954 | MR | Zbl

[52] A. B. Shabat, R. I. Yamilov, Phys. Lett. A, 130:4–5 (1988), 271–275 | DOI | MR

[53] A. V. Mikhailov, J. P. Wang, Phys. Lett. A, 375:45 (2011), 3960–3963, arXiv: 1105.1269 | DOI | MR | Zbl

[54] K. Narita, J. Math. Soc. Japan, 51:5 (1982), 1682–1685 | MR

[55] Y. Itoh, Progr. Theor. Phys., 78:3 (1987), 507–510 | DOI | MR

[56] A. K. Svinin, J. Phys. A, 42:45 (2009), 454021, 15 pp., arXiv: 0902.4517 | DOI | MR | Zbl

[57] A. K. Svinin, J. Phys. A, 44:16 (2011), 165206, 16 pp., arXiv: 1101.3808 | DOI | MR | Zbl

[58] V. É. Adler, On a discrete analog of the Tzitzeica equation, arXiv: 1103.5139

[59] V. É. Adler, V. V. Postnikov, Differential-difference equations associated with the fractional {L}ax operators, arXiv: 1107.2305 | MR

[60] M. Toda, J. Phys. Soc. Japan, 23:3 (1967), 501–506 | DOI

[61] H. Flaschka, Phys. Rev. B (3), 9:4 (1974), 1924–1925 | DOI | MR | Zbl

[62] R. Hirota, J. Phys. Soc. Japan, 35:1 (1973), 286–288 | DOI | MR

[63] S. N. M. Ruijsenaars, Commun. Math. Phys., 133:2 (1990), 217–247 | DOI | MR | Zbl

[64] Y. B. Suris, J. Phys. A, 30:5 (1997), 1745–1761 | DOI | MR | Zbl

[65] W. Oevel, B. Fuchssteiner, H. Zhang, O. Ragnisco, J. Math. Phys., 30:11 (1989), 2664–2670 | DOI | MR | Zbl

[66] Yu. B. Suris, Rev. Math. Phys., 11:6 (1999), 727–822 | DOI | MR | Zbl

[67] Y. B. Suris, O. Ragnisco, Commun. Math. Phys., 200:2 (1999), 445–485 | DOI | MR | Zbl

[68] I. Merola, O. Ragnisco, G.-Z. Tu, Inverse Probl., 10:6 (1994), 1315–1334 | DOI | MR | Zbl

[69] V. É. Adler, R. I. Yamilov, J. Phys. A, 27:2 (1994), 477–492 | DOI | MR | Zbl

[70] M. J. Ablowitz, J. F. Ladik, J. Math. Phys., 17:6 (1976), 1011–1018 | DOI | MR | Zbl

[71] W. Hereman, J. A. Sanders, J. Sayers, J. P. Wang, “Symbolic computation of polynomial conserved densities, generalized symmetries, and recursion operators for nonlinear differential-difference equations”, Group Theory and Numerical Analysis, CRM Proceedings and Lecture Notes, 39, eds. P. Winternitz, D. Gomez-Ullate, A. Iserles, D. Levi, P. J. Olver, R. Quispel, P. Tempesta, AMS, Providence, RI, 2005, 133–148 | DOI | MR | Zbl

[72] Ü. Göktaş, W. Hereman, Math. Computat. Appl., 16:1 (2011), 1–12 | MR

[73] M. Bruschi, O. Ragnisco, Inverse Problems, 5:6 (1989), 983–998 | DOI | MR | Zbl

[74] T. Tsuchida, J. Phys. A, 35:36 (2002), 7827–7847, arXiv: nlin/0105053 | DOI | MR | Zbl

[75] V. E. Adler, TMF, 124:1 (2000), 48–61 | DOI | DOI | MR | Zbl

[76] A. B. Shabat, R. I. Yamilov, Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl

[77] A. A. Belov, K. D. Chaltikian, Phys. Lett. B, 317:1–2 (1993), 64–72, arXiv: hep-th/9305096 | DOI | MR | Zbl

[78] R. Sahadevan, S. Khousalya, J. Math. Anal. Appl., 280:2 (2003), 241–251 | DOI | MR | Zbl

[79] K. Hikami, R. Inoue, J. Phys. A, 30:19 (1997), 6911–6924 | DOI | MR | Zbl

[80] G. M. Beffa, J. P. Wang, Hamiltonian evolutions of twisted gons in $\mathbb{RP}^n$, arXiv: 1207.6524

[81] M. Blaszak, K. Marciniak, J. Math. Phys., 35:9 (1994), 4661–4682 | DOI | MR | Zbl

[82] V. É. Adler, A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 233:3 (2003), 513–543, arXiv: nlin/0202024 | DOI | MR | Zbl

[83] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Funkts. analiz i ego pril., 43:1 (2009), 3–21 | DOI | DOI | MR | Zbl

[84] D. Levi, R. I. Yamilov, J. Phys. A, 44:14 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR | Zbl