Darboux transformations and recursion operators for differential--difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440
Voir la notice de l'article provenant de la source Math-Net.Ru
We review two concepts directly related to the Lax representations of integrable systems: Darboux transformations and recursion operators. We present an extensive list of integrable differential–difference equations with their Hamiltonian structures, recursion operators, nontrivial generalized symmetries, and Darboux–Lax representations. The new results include multi-Hamiltonian structures and recursion operators for integrable Volterra-type equations and integrable discretizations of derivative nonlinear Schrödinger equations such as the Kaup–Newell, Chen–Lee–Liu, and Ablowitz–Ramani–Segur (Gerdjikov–Ivanov) lattices. We also compute the weakly nonlocal inverse recursion operators.
Keywords:
symmetry, recursion operator, bi-Hamiltonian structure, Lax representation, integrable equation.
Mots-clés : Darboux transformation
Mots-clés : Darboux transformation
@article{TMF_2013_177_3_a1,
author = {F. Khanizadeh and A. V. Mikhailov and Jing Ping Wang},
title = {Darboux transformations and recursion operators for differential--difference equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {387--440},
publisher = {mathdoc},
volume = {177},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/}
}
TY - JOUR AU - F. Khanizadeh AU - A. V. Mikhailov AU - Jing Ping Wang TI - Darboux transformations and recursion operators for differential--difference equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 387 EP - 440 VL - 177 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/ LA - ru ID - TMF_2013_177_3_a1 ER -
%0 Journal Article %A F. Khanizadeh %A A. V. Mikhailov %A Jing Ping Wang %T Darboux transformations and recursion operators for differential--difference equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 387-440 %V 177 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/ %G ru %F TMF_2013_177_3_a1
F. Khanizadeh; A. V. Mikhailov; Jing Ping Wang. Darboux transformations and recursion operators for differential--difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 387-440. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a1/