New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 355-386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We suggest a new representation of Maslov's canonical operator in a neighborhood of caustics using a special class of coordinate systems (eikonal coordinates) on Lagrangian manifolds. We present the results in the two-dimensional case and illustrate them with examples.
Keywords: semiclassical asymptotics, focal point, caustic, integral representation, Bessel function, Schrödinger equation, wave beam.
@article{TMF_2013_177_3_a0,
     author = {S. Yu. Dobrokhotov and G. N. Makrakis and V. E. Nazaikinskii and T. Ya. Tudorovskii},
     title = {New formulas for {Maslov's} canonical operator in a~neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--386},
     year = {2013},
     volume = {177},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a0/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - G. N. Makrakis
AU  - V. E. Nazaikinskii
AU  - T. Ya. Tudorovskii
TI  - New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 355
EP  - 386
VL  - 177
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a0/
LA  - ru
ID  - TMF_2013_177_3_a0
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A G. N. Makrakis
%A V. E. Nazaikinskii
%A T. Ya. Tudorovskii
%T New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 355-386
%V 177
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a0/
%G ru
%F TMF_2013_177_3_a0
S. Yu. Dobrokhotov; G. N. Makrakis; V. E. Nazaikinskii; T. Ya. Tudorovskii. New formulas for Maslov's canonical operator in a neighborhood of focal points and caustics in two-dimensional semiclassical asymptotics. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 3, pp. 355-386. http://geodesic.mathdoc.fr/item/TMF_2013_177_3_a0/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[2] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[3] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora Maslova, Nauka, M., 1978 | MR | MR

[4] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[5] V. P. Maslov, V. E. Nazaikinskii, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. I. Psevdodifferentsialnye uravneniya s rastuschimi koeffitsientami”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 13, VINITI, M., 1979, 5–144 | DOI | MR | Zbl

[6] V. V. Belov, S. Yu. Dobrokhotov, TMF, 92:2 (1992), 215–254 | DOI | MR

[7] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, Matem. zametki, 82:5 (2007), 792–796 | DOI | DOI | MR | Zbl

[8] S. Dobrokhotov, A. Shafarevich, B. Tirozzi, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[9] L. Hörmander, Acta Math., 127:1–2 (1971), 79–183 | DOI | MR

[10] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, Fourier integrals and a new representation of Maslov's canonical operator near caustics, arXiv: 1307.2292 | MR

[11] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR

[12] M. V. Berry, S. Klein, Proc. Nat. Acad. Sci. U.S.A., 93:6 (1996), 2614–2619 | DOI | MR | Zbl

[13] J. J. Stamns, B. Spjelkavik, Optica, 30:9 (1983), 1331–1358 | DOI | MR

[14] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[15] B. R. Vainberg, Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, MGU, M., 1982 | MR

[16] V. V. Kucherenko, TMF, 1:3 (1969), 384–406 | DOI | MR

[17] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[18] S. Yu. Dobrokhotov, M. Rulo, Matem. zametki, 87:3 (2010), 458–463 ; S. Yu. Dobrokhotov, M. Rouleux, Asymptotic Anal., 74:1–2 (2011), 33–73 | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[19] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR

[20] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, v. 1, Nauka, M., 1982 | MR