@article{TMF_2013_177_2_a7,
author = {A. T. Filippov},
title = {Unified description of cosmological and static solutions in affine generalized theories of gravity: {Vecton{\textendash}scalaron} duality and its applications},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--352},
year = {2013},
volume = {177},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/}
}
TY - JOUR AU - A. T. Filippov TI - Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 323 EP - 352 VL - 177 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/ LA - ru ID - TMF_2013_177_2_a7 ER -
%0 Journal Article %A A. T. Filippov %T Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 323-352 %V 177 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/ %G ru %F TMF_2013_177_2_a7
A. T. Filippov. Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 323-352. http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/
[1] V. Sahni, A. Starobinsky, Internat. J. Modern Phys. D, 15:12 (2006), 2105–2132, arXiv: astro-ph/0610026 | DOI | MR | Zbl
[2] E. J. Copeland, M. Sami, S. Tsujikawa, Internat. J. Modern Phys. D, 15:11 (2006), 1753–1935, arXiv: hep-th/0603057 | DOI | MR | Zbl
[3] A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Acad. Publ., Chur, Switzerland, 1990, arXiv: hep-th/0503203
[4] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York, 2005 | MR | Zbl
[5] S. Weinberg, Cosmology, Oxford Univ. Press, Oxford, 2008 | MR | Zbl
[6] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Teoriya goryachego Bolshogo vzryva, URSS, M., 2008 | Zbl
[7] D. Langlois, Lectures on inflation and cosmological perturbations, arXiv: 1001.5259
[8] A. H. Guth, Y. Nomura, Phys. Rev. D, 86:2 (2012), 023534, 24 pp., arXiv: 1203.6876 | DOI
[9] D. Mulryne, J. Ward, Towards an observational appraisel of string cosmology, Class. Quantum Grav., 28, no. 20, 2011, 20 pp., arXiv: 1105.5421 | DOI | MR | Zbl
[10] S. R. Green, E. J. Martinec, C. Quigley, S. Sethi, Class. Quantum Grav., 29:7 (2012), 075006, 16 pp., arXiv: 1110.0545 | DOI | MR | Zbl
[11] N. Mavromatos, “The issue of dark energy in string theory”, The Invisible Universe: Dark Matter and Dark Energy, Lecture Notes in Physics, 720, ed. L. Papantonopoulos, Springer, Berlin–Heidelberg, 2007, 333–374, arXiv: hep-th/0507006 | DOI
[12] R. Bousso, The cosmological constant problem, dark energy, and the landscape of string theory, arXiv: 1203.0307
[13] S. Nojiri, S. D. Odintsov, Phys. Rep., 505:2 (2011), 59–144, arXiv: 1011.0544 | DOI | MR
[14] T. Clifton, P. Ferreira, A. Padilla, C. Skordis, Phys. Rep., 513:1–3 (2012), 1–189, arXiv: 1106.2476 | DOI | MR
[15] D. Rodrigues, F. de Salles, I. Shapiro, A. Starobinsky, Phys. Rev. D, 83:8 (2011), 084028, 14 pp., arXiv: 1101.5028 | DOI
[16] Ph. Brax, Acta Phys. Polon. B, 43:12 (2012), 2307–2329, arXiv: 1211.5237 | DOI | MR
[17] J. E. Lidsey, D. Wands, E. J. Copeland, Phys. Rep., 337:4–5 (2000), 343–492, arXiv: hep-th/9909061 | DOI | MR
[18] A. T. Filippov, On Einstein–Weyl unified model of dark energy and dark matter, arXiv: 0812.2616
[19] A. T. Filippov, TMF, 163:3 (2010), 430–448, arXiv: 1003.0782 | DOI | DOI | MR | Zbl
[20] A. T. Filippov, Tr. MIAN, 272 (2011), 117–128, arXiv: 1008.2333 | DOI | MR
[21] A. T. Filippov, “An old Einstein–Eddington generalized gravity and modern ideas on branes and cosmology”, Gribov-80 Memorial volume, eds. Yu. L. Dokshitzer, P. Levai, J. Nyiri, World Sci., Singapore, 2011, 479–495, arXiv: 1011.2445 | DOI
[22] A. T. Filippov, General properties and some solutions of generalized Einstein–Eddington affine gravity I, arXiv: 1112.3023
[23] S. Carlip, Quantum Gravity in $2+1$ Dimensions, Cambridge Univ. Press, New York, 1998 | MR | Zbl
[24] E. Witten, Three-dimensional gravity revisited, arXiv: 0706.3359
[25] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality, arXiv: hep-th/0605276
[26] S. Chandrasekhar, The Mathematical Theory of Black Holes, Series of Monographs on Physics, 69, Oxford Univ. Press, Oxford, 1983 | MR | Zbl
[27] P. Breitenlohner, G. Gibbons, D. Maison, Commun. Math. Phys., 120:2 (1988), 295–333 | DOI | MR | Zbl
[28] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[29] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 ; Internat. J. Modern Phys. A, 12:01 (1997), 13–22, arXiv: gr-qc/9612058 | DOI | MR | Zbl | DOI | MR | Zbl
[30] A. T. Filippov, Integrable models of horizons and cosmologies, arXiv: hep-th/0307266
[31] V. de Alfaro, A. T. Filippov, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 140 (2007), 139–145, arXiv: hep-th/0307269 | MR
[32] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes cosmologies from high dimensional theories, arXiv: hep-th/0504101
[33] V. de Alfaro, A. T. Filippov, TMF, 162:1 (2010), 41–68, arXiv: 0902.4445 | DOI | DOI | MR | Zbl
[34] A. T. Filippov, D. Maison, Class. Quantum Grav., 20:9 (2003), 1779–1786, arXiv: gr-qc/0210081 | DOI | MR | Zbl
[35] R. Arnowitt, S. Deser, C. W. Misner, “The dynamics of general relativity”, Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley, New York, 1962, 227–264, arXiv: gr-qc/0405109 | MR
[36] A. T. Filippov, TMF, 146:1 (2006), 115–131, arXiv: hep-th/0505060 | DOI | DOI | MR | Zbl
[37] V. De Alfaro, A. T. Filippov, TMF, 153:3 (2007), 422–452, arXiv: hep-th/0612258 | DOI | DOI | MR | Zbl
[38] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, NJ, 2008 | MR
[39] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369:4 (2002), 327–430, arXiv: hep-th/0204253 | DOI | MR | Zbl
[40] R. Jackiw, TMF, 92:3 (1992), 404–414 | DOI | MR | Zbl
[41] C. Callan Jr., S. Giddings, J. Harvey, A. Strominger, Phys. Rev. D, 45:4 (1992), R1005–R1009 | DOI | MR
[42] V. P. Frolov, I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments, Fundamental Theories of Physics, 96, Springer, Berlin, 1998 | MR
[43] E. A. Davydov, A. T. Filippov, Dilaton-scalar models in context of generalized affine gravity theories: their properties and integrability, arXiv: 1302.6969 | MR
[44] L. H. Ford, Phys. Rev. D, 40:4 (1989), 967–972 | DOI
[45] M. Cavaglia, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:05 (1995), 661–672, arXiv: ; 5:03 (1996), 227–250, arXiv: gr-qc/9411070gr-qc/9508062 | DOI | MR | DOI | MR
[46] M. Cavaglia, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. A, 10:05 (1995), 611–633, arXiv: gr-qc/9402031 | DOI | MR | Zbl
[47] H. Hamber, Quantum Gravitation. The Feynman Path Integral Approach, Springer, Berlin, 2009 | MR | Zbl
[48] D. Oriti (ed.), Approaches to Quantum Gravity. Toward a New Understanding of Space, Time and Matter, Cambridge Univ. Press, Cambridge, 2009 | Zbl