Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 323-352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly describe the simplest class of affine theories of gravity in multidimensional space–times with symmetric connections and their reductions to two-dimensional dilaton–vecton gravity field theories. The distinctive feature of these theories is the presence of an absolutely neutral massive (or tachyonic) vector field (vecton) with an essentially nonlinear coupling to the dilaton gravity. We emphasize that the vecton field in dilaton–vecton gravity can be consistently replaced by a new effectively massive scalar field (scalaron) with an unusual coupling to the dilaton gravity. With this vecton–scalaron duality, we can use the methods and results of the standard dilaton gravity coupled to usual scalars in more complex dilaton–scalaron gravity theories equivalent to dilaton–vecton gravity. We present the dilaton–vecton gravity models derived by reductions of multidimensional affine theories and obtain one-dimensional dynamical systems simultaneously describing cosmological and static states in any gauge. Our approach is fully applicable to studying static and cosmological solutions in multidimensional theories and also in general one-dimensional dilaton–scalaron gravity models. We focus on general and global properties of the models, seeking integrals and analyzing the structure of the solution space. In integrable cases, it can be usefully visualized by drawing a "topological portrait" resembling the phase portraits of dynamical systems and simply exposing the global properties of static and cosmological solutions, including horizons, singularities, etc. For analytic approximations, we also propose an integral equation well suited for iterations.
Keywords: modified gravity, dilaton gravity, cosmology, integrable system.
@article{TMF_2013_177_2_a7,
     author = {A. T. Filippov},
     title = {Unified description of cosmological and static solutions in affine generalized theories of gravity: {Vecton{\textendash}scalaron} duality and its applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--352},
     year = {2013},
     volume = {177},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/}
}
TY  - JOUR
AU  - A. T. Filippov
TI  - Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 323
EP  - 352
VL  - 177
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/
LA  - ru
ID  - TMF_2013_177_2_a7
ER  - 
%0 Journal Article
%A A. T. Filippov
%T Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 323-352
%V 177
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/
%G ru
%F TMF_2013_177_2_a7
A. T. Filippov. Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 323-352. http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a7/

[1] V. Sahni, A. Starobinsky, Internat. J. Modern Phys. D, 15:12 (2006), 2105–2132, arXiv: astro-ph/0610026 | DOI | MR | Zbl

[2] E. J. Copeland, M. Sami, S. Tsujikawa, Internat. J. Modern Phys. D, 15:11 (2006), 1753–1935, arXiv: hep-th/0603057 | DOI | MR | Zbl

[3] A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Acad. Publ., Chur, Switzerland, 1990, arXiv: hep-th/0503203

[4] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York, 2005 | MR | Zbl

[5] S. Weinberg, Cosmology, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[6] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Teoriya goryachego Bolshogo vzryva, URSS, M., 2008 | Zbl

[7] D. Langlois, Lectures on inflation and cosmological perturbations, arXiv: 1001.5259

[8] A. H. Guth, Y. Nomura, Phys. Rev. D, 86:2 (2012), 023534, 24 pp., arXiv: 1203.6876 | DOI

[9] D. Mulryne, J. Ward, Towards an observational appraisel of string cosmology, Class. Quantum Grav., 28, no. 20, 2011, 20 pp., arXiv: 1105.5421 | DOI | MR | Zbl

[10] S. R. Green, E. J. Martinec, C. Quigley, S. Sethi, Class. Quantum Grav., 29:7 (2012), 075006, 16 pp., arXiv: 1110.0545 | DOI | MR | Zbl

[11] N. Mavromatos, “The issue of dark energy in string theory”, The Invisible Universe: Dark Matter and Dark Energy, Lecture Notes in Physics, 720, ed. L. Papantonopoulos, Springer, Berlin–Heidelberg, 2007, 333–374, arXiv: hep-th/0507006 | DOI

[12] R. Bousso, The cosmological constant problem, dark energy, and the landscape of string theory, arXiv: 1203.0307

[13] S. Nojiri, S. D. Odintsov, Phys. Rep., 505:2 (2011), 59–144, arXiv: 1011.0544 | DOI | MR

[14] T. Clifton, P. Ferreira, A. Padilla, C. Skordis, Phys. Rep., 513:1–3 (2012), 1–189, arXiv: 1106.2476 | DOI | MR

[15] D. Rodrigues, F. de Salles, I. Shapiro, A. Starobinsky, Phys. Rev. D, 83:8 (2011), 084028, 14 pp., arXiv: 1101.5028 | DOI

[16] Ph. Brax, Acta Phys. Polon. B, 43:12 (2012), 2307–2329, arXiv: 1211.5237 | DOI | MR

[17] J. E. Lidsey, D. Wands, E. J. Copeland, Phys. Rep., 337:4–5 (2000), 343–492, arXiv: hep-th/9909061 | DOI | MR

[18] A. T. Filippov, On Einstein–Weyl unified model of dark energy and dark matter, arXiv: 0812.2616

[19] A. T. Filippov, TMF, 163:3 (2010), 430–448, arXiv: 1003.0782 | DOI | DOI | MR | Zbl

[20] A. T. Filippov, Tr. MIAN, 272 (2011), 117–128, arXiv: 1008.2333 | DOI | MR

[21] A. T. Filippov, “An old Einstein–Eddington generalized gravity and modern ideas on branes and cosmology”, Gribov-80 Memorial volume, eds. Yu. L. Dokshitzer, P. Levai, J. Nyiri, World Sci., Singapore, 2011, 479–495, arXiv: 1011.2445 | DOI

[22] A. T. Filippov, General properties and some solutions of generalized Einstein–Eddington affine gravity I, arXiv: 1112.3023

[23] S. Carlip, Quantum Gravity in $2+1$ Dimensions, Cambridge Univ. Press, New York, 1998 | MR | Zbl

[24] E. Witten, Three-dimensional gravity revisited, arXiv: 0706.3359

[25] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static-cosmological duality, arXiv: hep-th/0605276

[26] S. Chandrasekhar, The Mathematical Theory of Black Holes, Series of Monographs on Physics, 69, Oxford Univ. Press, Oxford, 1983 | MR | Zbl

[27] P. Breitenlohner, G. Gibbons, D. Maison, Commun. Math. Phys., 120:2 (1988), 295–333 | DOI | MR | Zbl

[28] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[29] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 ; Internat. J. Modern Phys. A, 12:01 (1997), 13–22, arXiv: gr-qc/9612058 | DOI | MR | Zbl | DOI | MR | Zbl

[30] A. T. Filippov, Integrable models of horizons and cosmologies, arXiv: hep-th/0307266

[31] V. de Alfaro, A. T. Filippov, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 140 (2007), 139–145, arXiv: hep-th/0307269 | MR

[32] V. de Alfaro, A. T. Filippov, Integrable low dimensional models for black holes cosmologies from high dimensional theories, arXiv: hep-th/0504101

[33] V. de Alfaro, A. T. Filippov, TMF, 162:1 (2010), 41–68, arXiv: 0902.4445 | DOI | DOI | MR | Zbl

[34] A. T. Filippov, D. Maison, Class. Quantum Grav., 20:9 (2003), 1779–1786, arXiv: gr-qc/0210081 | DOI | MR | Zbl

[35] R. Arnowitt, S. Deser, C. W. Misner, “The dynamics of general relativity”, Gravitation: An Introduction to Current Research, ed. L. Witten, Wiley, New York, 1962, 227–264, arXiv: gr-qc/0405109 | MR

[36] A. T. Filippov, TMF, 146:1 (2006), 115–131, arXiv: hep-th/0505060 | DOI | DOI | MR | Zbl

[37] V. De Alfaro, A. T. Filippov, TMF, 153:3 (2007), 422–452, arXiv: hep-th/0612258 | DOI | DOI | MR | Zbl

[38] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, NJ, 2008 | MR

[39] D. Grumiller, W. Kummer, D. Vassilevich, Phys. Rep., 369:4 (2002), 327–430, arXiv: hep-th/0204253 | DOI | MR | Zbl

[40] R. Jackiw, TMF, 92:3 (1992), 404–414 | DOI | MR | Zbl

[41] C. Callan Jr., S. Giddings, J. Harvey, A. Strominger, Phys. Rev. D, 45:4 (1992), R1005–R1009 | DOI | MR

[42] V. P. Frolov, I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments, Fundamental Theories of Physics, 96, Springer, Berlin, 1998 | MR

[43] E. A. Davydov, A. T. Filippov, Dilaton-scalar models in context of generalized affine gravity theories: their properties and integrability, arXiv: 1302.6969 | MR

[44] L. H. Ford, Phys. Rev. D, 40:4 (1989), 967–972 | DOI

[45] M. Cavaglia, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:05 (1995), 661–672, arXiv: ; 5:03 (1996), 227–250, arXiv: gr-qc/9411070gr-qc/9508062 | DOI | MR | DOI | MR

[46] M. Cavaglia, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. A, 10:05 (1995), 611–633, arXiv: gr-qc/9402031 | DOI | MR | Zbl

[47] H. Hamber, Quantum Gravitation. The Feynman Path Integral Approach, Springer, Berlin, 2009 | MR | Zbl

[48] D. Oriti (ed.), Approaches to Quantum Gravity. Toward a New Understanding of Space, Time and Matter, Cambridge Univ. Press, Cambridge, 2009 | Zbl