Box ladders in a noninteger dimension
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 276-305 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a family of triangle-ladder diagrams that can be calculated using the Belokurov–Usyukina loop reduction technique in $d=4-2\varepsilon$ dimensions. The main idea of the approach we propose is to generalize this loop reduction technique existing in $d=4$ dimensions. We derive a recurrence relation between the result for an $L$-loop triangle-ladder diagram of this family and the result for an $(L-1)$-loop triangle-ladder diagram of the same family. Because the proposed method combines analytic and dimensional regularizations, we must remove the analytic regularization at the end of the calculation by taking the double uniform limit in which the parameters of the analytic regularization vanish. In the position space, we obtain a diagram in the left-hand side of the recurrence relations in which the rung indices are $1$ and all other indices are $1-\varepsilon$ in this limit. Fourier transforms of diagrams of this type give momentum space diagrams with rung indices $1-\varepsilon$ and all other indices $1$. By a conformal transformation of the dual space image of this momentum space representation, we relate such a family of triangle-ladder momentum diagrams to a family of box-ladder momentum diagrams with rung indices $1-\varepsilon$ and all other indices $1$. Because any diagram from this family is reducible to a one-loop diagram, the proposed generalization of the Belokurov–Usyukina loop reduction technique to a noninteger number of dimensions allows calculating this family of box-ladder diagrams in the momentum space explicitly in terms of Appell's hypergeometric function $F_4$ without expanding in powers of the parameter $\varepsilon$ in an arbitrary kinematic region in the momentum space.
Keywords: Belokurov–Usyukina loop reduction technique, noninteger dimensions.
@article{TMF_2013_177_2_a5,
     author = {I. Gonzalez and I. Kondrashuk},
     title = {Box ladders in a~noninteger dimension},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {276--305},
     year = {2013},
     volume = {177},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a5/}
}
TY  - JOUR
AU  - I. Gonzalez
AU  - I. Kondrashuk
TI  - Box ladders in a noninteger dimension
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 276
EP  - 305
VL  - 177
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a5/
LA  - ru
ID  - TMF_2013_177_2_a5
ER  - 
%0 Journal Article
%A I. Gonzalez
%A I. Kondrashuk
%T Box ladders in a noninteger dimension
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 276-305
%V 177
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a5/
%G ru
%F TMF_2013_177_2_a5
I. Gonzalez; I. Kondrashuk. Box ladders in a noninteger dimension. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 276-305. http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a5/

[1] D. J. Broadhurst, A. I. Davydychev, Nucl. Phys. Proc. Suppl., 205–206 (2010), 326–330, arXiv: 1007.0237 | DOI

[2] Z. Bern, L. J. Dixon, V. A. Smirnov, Phys. Rev. D, 72:8 (2005), 085001, 27 pp., arXiv: hep-th/0505205 | DOI | MR

[3] V. A. Smirnov, Evaluating Feynman Integrals, Springer Tracts in Modern Physics, 211, Springer, Berlin, 2004 | MR | Zbl

[4] N. I. Ussyukina, A. I. Davydychev, Phys. Lett. B, 298:3–4 (1993), 363–370 | DOI | MR

[5] N. I. Ussyukina, A. I. Davydychev, Phys. Lett. B, 305:1–2 (1993), 136–143 | DOI | MR

[6] E. E. Boos, A. I. Davydychev, TMF, 89:1 (1991), 56–72 | DOI | MR

[7] A. I. Davydychev, J. Phys. A, 25:21 (1992), 5587–5596 | DOI | MR | Zbl

[8] V. V. Belokurov, N. I. Ussyukina, J. Phys. A, 16:12 (1983), 2811–2816 | DOI

[9] N. I. Usyukina, TMF, 54:1 (1983), 124–129 | DOI

[10] N. I. Ussyukina, Phys. Lett. B, 267:3 (1991), 382-388 | DOI

[11] D. J. Broadhurst, Phys. Lett. B, 307:1–2 (1993), 132–139 | DOI | MR

[12] I. Kondrashuk, A. Vergara, JHEP, 03 (2010), 051, 12 pp., arXiv: 0911.1979 | DOI

[13] I. Gonzalez, I. Kondrashuk, Phys. Part. Nucl., 44:2 (2013), 268–271, arXiv: 1206.4763 | DOI

[14] P. Allendes, B. Kniehl, I. Kondrashuk, E. A. Notte Cuello, M. Rojas Medar, Nucl. Phys. B, 870:1 (2013), 243–277, arXiv: 1205.6257 | DOI | MR | Zbl

[15] M. D'Eramo, L. Peliti, G. Parisi, Lett. Nuovo Cimento, 2:17 (1971), 878–880 | DOI

[16] A. N. Vasilev, Yu. M. Pismak, Yu. R. Khonkonen, TMF, 47:3 (1981), 291–306 | DOI

[17] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | MR

[18] D. I. Kazakov, Analytical Methods For Multiloop Calculations: Two Lectures On The Method Of Uniqueness, JINR-E2-84-410, JINR, Dubna, 1984 | MR

[19] G. Cvetič, I. Kondrashuk, A. Kotikov, I. Schmidt, Internat. J. Modern Phys. A, 22:10 (2007), 1905–1934, arXiv: hep-th/0604112 | DOI | Zbl

[20] I. Kondrashuk, A. Kotikov, “Fourier transforms of UD integrals”, Analysis and Mathematical Physics, Birkhäuser Book Series Trends in Mathematics, eds. B. Gustafsson, A. Vasiliev, Birkhäuser, Basel, Switzerland, 2009, 337–348, arXiv: 0802.3468 | MR

[21] I. Kondrashuk, A. Kotikov, JHEP, 08 (2008), 106, 9 pp., arXiv: 0803.3420 | DOI

[22] P. Allendes, N. Guerrero, I. Kondrashuk, E. A. Notte Cuello, J. Math. Phys., 51:5 (2010), 052304, 18 pp., arXiv: 0910.4805 | DOI | MR | Zbl

[23] D. Binosi, L. Theussl, Comp. Phys. Comm., 161:1–2 (2004), 76–86, arXiv: hep-ph/0309015 | DOI