Periodic solutions of the~Hopf equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 222-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the long-time dynamics of approximate solutions of the boundary-value problem for the Hopf equation on a finite segment. Together with the initial conditions, for instance, we impose the zero Dirichlet conditions on both ends of the segment. In this case, all features of solutions associated with the intersections of characteristics are accumulated on a strip bounded by the vertical characteristics emitted from the boundary points.
Keywords: generalized solution, conservation law, Galerkin method.
@article{TMF_2013_177_2_a1,
     author = {A. B. Shabat},
     title = {Periodic solutions of {the~Hopf} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--230},
     publisher = {mathdoc},
     volume = {177},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a1/}
}
TY  - JOUR
AU  - A. B. Shabat
TI  - Periodic solutions of the~Hopf equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 222
EP  - 230
VL  - 177
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a1/
LA  - ru
ID  - TMF_2013_177_2_a1
ER  - 
%0 Journal Article
%A A. B. Shabat
%T Periodic solutions of the~Hopf equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 222-230
%V 177
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a1/
%G ru
%F TMF_2013_177_2_a1
A. B. Shabat. Periodic solutions of the~Hopf equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 222-230. http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a1/