Genus expansion of HOMFLY polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 179-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the planar limit of the 't Hooft expansion, the Wilson-loop vacuum average in the three-dimensional Chern–Simons theory (in other words, the HOMFLY polynomial) depends very simply on the representation (Young diagramm), $H_R(A|q)\big|_{q=1}=\bigl(\sigma_1(A)\bigr)^{|R|}$. As a result, the (knot-dependent) Ooguri–Vafa partition function $\sum_RH_R\chi_R\{\bar p_k\}$ becomes a trivial $\tau$-function of the Kadomtsev–Petviashvili hierarchy. We study higher-genus corrections to this formula for $H_R$ in the form of an expansion in powers of $z=q-q^{-1}$. The expansion coefficients are expressed in terms of the eigenvalues of cut-and-join operators, i.e., symmetric group characters. Moreover, the $z$-expansion is naturally written in a product form. The representation in terms of cut-and-join operators relates to the Hurwitz theory and its sophisticated integrability. The obtained relations describe the form of the genus expansion for the HOMFLY polynomials, which for the corresponding matrix model is usually given using Virasoro-like constraints and the topological recursion. The genus expansion differs from the better-studied weak-coupling expansion at a finite number $N$ of colors, which is described in terms of Vassiliev invariants and the Kontsevich integral.
Keywords: Chern–Simons theory, knot invariant, 't Hooft expansion.
@article{TMF_2013_177_2_a0,
     author = {A. D. Mironov and A. Yu. Morozov and A. V. Sleptsov},
     title = {Genus expansion of {HOMFLY} polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--221},
     year = {2013},
     volume = {177},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a0/}
}
TY  - JOUR
AU  - A. D. Mironov
AU  - A. Yu. Morozov
AU  - A. V. Sleptsov
TI  - Genus expansion of HOMFLY polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 179
EP  - 221
VL  - 177
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a0/
LA  - ru
ID  - TMF_2013_177_2_a0
ER  - 
%0 Journal Article
%A A. D. Mironov
%A A. Yu. Morozov
%A A. V. Sleptsov
%T Genus expansion of HOMFLY polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 179-221
%V 177
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a0/
%G ru
%F TMF_2013_177_2_a0
A. D. Mironov; A. Yu. Morozov; A. V. Sleptsov. Genus expansion of HOMFLY polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 2, pp. 179-221. http://geodesic.mathdoc.fr/item/TMF_2013_177_2_a0/

[1] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millet, A. Ocneanu, Bull. Amer. Math. Soc., 12:2 (1985), 239–246 ; J. H. Przytycki, K. P. Traczyk, Kobe J. Math., 4:2 (1987), 115–139 | DOI | MR | Zbl | MR | Zbl

[2] S.-S. Chern, J. Simons, Ann. Math. (2), 99:1 (1974), 48–69 ; E. Witten, Commun. Math. Phys., 121:3 (1989), 351–399 ; G. Moore, N. Seiberg, Phys. Lett. B, 220:3 (1989), 422–430 ; V. Fock, Ya. I. Kogan, Modern Phys. Lett. A, 5:17 (1990), 1365–1371 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[3] S. Gukov, A. Schwarz, C. Vafa, Lett. Math. Phys., 74:1 (2005), 53–74, arXiv: ; N. M. Dunfield, S. Gukov, J. Rasmussen, Experiment. Math., 15:2 (2006), 129–159, arXiv: hep-th/0412243math/0505662 | DOI | MR | Zbl | DOI | MR | Zbl

[4] M. Khovanov, Duke Math. J., 101:3 (2000), 359–426 ; D. Bar-Natan, Algeb. Geom. Topol., 2 (2002), 337–370, arXiv: ; M. Khovanov, L. Rozhansky, Fund. Math., 199:1 (2008), 1–91, arXiv: ; Geom. Topol., 12:3 (2008), 1387–1425, arXiv: ; V. Dolotin, A. Morozov, JHEP, 01 (2013), 065, 48 pp., arXiv: ; J. Phys. Conf. Ser., 411:1 (2013), 012013, 22 pp., arXiv: math/0201043math.QA/0401268math.QA/05050561208.49941209.5109 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI

[5] M. Aganagic, Sh. Shakirov, Knot homology from refined Chern–Simons theory, arXiv: 1105.5117

[6] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov, JHEP, 03 (2013), 021, 87 pp., arXiv: 1106.4305 | DOI | MR

[7] A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials. I. Integrability and difference equations”, Strings, Gauge Fields, and the Geometry Behind. The Legacy of Maximilian Kreuzer, eds. A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, E. Scheidegger, World Sci., Hackensack, NJ, 2013, 101–118, arXiv: 1112.5754 | MR | Zbl

[8] A. Mironov, A. Morozov, And. Morozov, JHEP, 03 (2012), 034, 34 pp., arXiv: 1112.2654 | DOI

[9] H. Morton, S. Lukac, J. Knot Theory Ramifications, 12:3 (2003), 395–416, arXiv: math.GT/0108011 | DOI | MR | Zbl

[10] R. Gelca, Math. Proc. Cambridge Philos. Soc., 133:2 (2002), 311–323, arXiv: ; R. Gelca, J. Sain, J. Knot Theory Ramifications, 12:2 (2003), 187–201, arXiv: ; S. Gukov, Commun. Math. Phys., 255:3 (2005), 577–627, arXiv: ; S. Garoufalidis, “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest (Fayetteville, AR, USA, April 10–12, 2003; Austin, TX, USA, May 19–21, 2003), Geometry and Topology Monographs, 7, eds. C. Gordon, Y. Rieck, Geom. Topol. Publ., Coventry, 2004, 291–309, arXiv: math/0004158math/0201100hep-th/0306165math/0306230 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[11] E. Gorsky, A. Oblomkov, J. Rasmussen, On stable Khovanov homology of torus knots, arXiv: 1206.2226 | MR

[12] A. Mironov, A. Morozov, “Equations on knot polynomials and 3d/5d duality”, The Sixth International School on Field Theory and Gravitation–2012 (Petropólis – RJ, Brazil, 23–27 April 2012), AIP Conference Proceedings, 1483, 2012, 189–211, arXiv: 1208.2282 | DOI

[13] A. Mironov, A. Morozov, An. Morozov, Evolution method and “differential hierarchy” of colored knot polynomials, arXiv: 1306.3197 | MR

[14] Sh. Zhu, Colored HOMFLY polynomial via skein theory, arXiv: 1206.5886

[15] A. Morozov, The first-order deviation of superpolynomial in an arbitrary representation from the special polynomial, arXiv: 1211.4596

[16] A. Anokhina, A. Mironov, A. Morozov, An. Morozov, Knot polynomials in the first non-symmetric representation, arXiv: 1211.6375 | MR

[17] J. M. F. Labastida, E. Pérez, J. Math. Phys., 39:10 (1998), 5183–5198, arXiv: ; S. Chmutov, S. Duzhin, “The Kontsevich integral”, Encyclopedia of Mathematical Physics, v. 3, eds. J.-P. Françoise, G. L. Naber, S. T. Tsou, Elsevier, Oxford, 2006, 231–239, arXiv: hep-th/9710176math/0501040 | DOI | MR | Zbl | MR

[18] M. Kontsevich, “Vassiliev's Knot Invariants”, I. M. Gel'fand Seminar, Advances in Soviet Mathematics, 16(2), AMS, Providence, RI, 1993, 137–150 ; M. Alvarez, J. M. F. Labastida, E. Pérez, Nucl. Phys. B, 488:3 (1997), 677–718, arXiv: ; S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev Knot Invariants, Cambridge Univ. Press, Cambridge, 2012, arXiv: hep-th/96070301103.5628 | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[19] A. S. Anokhina, A. A. Morozov, “Protsedura kablirovaniya dlya raskrashennykh polinomov KhOMFLI”, TMF, 178 (2014) (to appear) , arXiv: 1307.2216 | DOI | MR | Zbl

[20] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, TMF, 166:1 (2011), 3–27 ; A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, J. Geom. Phys., 62:2 (2012), 148–155, arXiv: 1012.0433 | DOI | DOI | Zbl | DOI | MR | Zbl

[21] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford Univ. Press, New York, 1958 ; М. Хамермеш, Теория групп и ее применение к физическим проблемам, Едиториал УРСС, M., 2002 ; W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | MR | MR | Zbl

[22] H. Ooguri, C. Vafa, Nucl. Phys. B, 577:3 (2000), 419–438, arXiv: ; J. Labastida, M. Mariño, Commun. Math. Phys., 217:2 (2001), 423–449, arXiv: ; M. Mariño, C. Vafa, “Framed knots at large $N$”, Orbifolds in Mathematics and Physics (Madison, WI, 2001), Contemporary Mathematics, 310, eds. A. Adem, J. Morava, Y. Ruan, AMS, Providence, RI, 2002, 185–204, arXiv: hep-th/9912123hep-th/0004196hep-th/0108064 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[23] K. Liu, P. Peng, J. Differ. Geom., 85:3 (2010), 479–525, arXiv: 0704.1526 | DOI | MR | Zbl

[24] M. Alvarez, J. M. F. Labastida, Nucl. Phys. B, 433:3 (1995), 555–596, arXiv: ; J. M. F. Labastida, “Chern–Simons Gauge Theory: Ten Years After”, Trends in Theoretical Physics II (Buenos Aires, 1998), AIP Conference Proceedings, 484, Amer. Inst. Phys., Woodbury, NY, 1999, 1–40, arXiv: hep-th/9407076hep-th/9905057 | DOI | MR | Zbl | DOI | MR | Zbl

[25] J. M. F. Labastida, M. Mariño, Internat. J. Modern Phys. A, 10:7 (1995), 1045–1089, arXiv: hep-th/9402093 | DOI | MR | Zbl

[26] P. Dunin-Barkowski, A. Sleptsov, A. Smirnov, Internat J. Modern Phys. A, 28:17 (2013), 1330025, 38 pp., arXiv: 1112.5406 | DOI | MR | Zbl

[27] R. Kashaev, Lett. Math. Phys., 39:3 (1997), 269–275 ; H. Murakami, J. Murakami, Acta Math., 186:1 (2001), 85–104 ; S. Gukov, H. Murakami, Lett. Math. Phys., 86:2–3 (2008), 79–98, arXiv: ; H. Murakami, “An introduction to the volume conjecture”, Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemporary Mathematics, 541, eds. A. Champanerkar, O. Dasbach, E. Kalfagianni, I. Kofman, W. Neumann, N. Stoltzfus, AMS, Providence, RI, 2011, 1–40, arXiv: math/06083241002.0126 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[28] J. M. F. Labastida, M. Mariño, C. Vafa, JHEP, 11 (2000), 007, 41 pp., arXiv: hep-th/0010102 | DOI | MR | Zbl

[29] A. Brini, B. Eynard, M. Mariño, Ann. H. Poincaré, 13:8, 1873–1910, arXiv: 1105.2012 | DOI | MR | Zbl

[30] R. Dijkgraaf, H. Fuji, M. Manabe, Nucl. Phys. B, 849:1 (2011), 166–211, arXiv: 1010.4542 | DOI | MR | Zbl

[31] A. Alexandrov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 19:24 (2004), 4127–4163, arXiv: ; Physica D, 235:1–2 (2007), 126–167, arXiv: ; JHEP, 12 (2009), 053, 51 pp., arXiv: ; А. С. Александров, А. Д. Миронов, А. Ю. Морозов, ТМФ, 150:2 (2007), 179–192, arXiv: ; A. Alexandrov, A. Mironov, A. Morozov, P. Putrov, Internat. J. Modern Phys. A, 24:27 (2009), 4939–4998, arXiv: ; B. Eynard, JHEP, 11 (2004), 031, 5 pp., arXiv: ; L. Chekhov, B. Eynard, JHEP, 03 (2006), 014, 18 pp., arXiv: ; 12 (2006), 026, 29 pp., arXiv: ; N. Orantin, Symplectic invariants, Virasoro constraints and Givental decomposition, arXiv: hep-th/0310113hep-th/06082280906.3305hep-th/06051710811.2825hep-th/0407261hep-th/0504116math–ph/06040140808.0635 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | Zbl

[32] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR | MR

[33] A. Alexandrov, A. Mironov, A. Morozov, S. Natanzon, J. Phys. A, 45:4 (2012), 045209, 10 pp., arXiv: 1103.4100 | DOI | MR | Zbl

[34] A. Mironov, A. Morozov, S. Natanzon, JHEP, 11 (2011), 097, 32 pp., arXiv: 1108.0885 | DOI | MR | Zbl

[35] A. Mironov, A. Morozov, A. Sleptsov, Europ. Phys. J. C, 73 (2013), 2492, arXiv: 1304.7499 | DOI

[36] H. R. Morton, P. R. Cromwell, J. Knot Theory Ramifications, 5:2 (1996), 225–238 | DOI | MR | Zbl

[37] S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, Internat. J. Modern Phys. A, 10:14 (1995), 2015–2051, arXiv: hep-th/9312210 | DOI | MR | Zbl

[38] M. Rosso, V. F. R. Jones, J. Knot Theory Ramifications, 2:1 (1993), 97–112 ; X.-S. Lin, H. Zheng, Trans. Amer. Math. Soc., 362:1 (2010), 1–18, arXiv: ; S. Stevan, Ann. H. Poincaré, 11:7 (2010), 1201–1224, arXiv: math/06012671003.2861 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[39] R. Lawrence, L. Rozhansky, Commun. Math. Phys., 205:2 (1999), 287–314 ; M. Mariño, Commun. Math. Phys., 253 (2005), 25–49, arXiv: ; C. Beasley, E. Witten, J. Diff. Geom., 70:2 (2005), 183–323, arXiv: ; Y. Dolivet, M. Tierz, J. Math. Phys., 48:2 (2007), 023507, 20 pp., arXiv: hep-th/0207096hep-th/0503126hep-th/0609167 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[40] R. Gopakumar, C. Vafa, Adv. Theor. Math. Phys., 3:5 (1999), 1415–1443, arXiv: hep-th/9811131 | DOI | MR | Zbl

[41] P. Ramadevi, T. Sarkar, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: ; Zodinmawia, P. Ramadevi, Nucl. Phys. B, 870:1 (2013), 205–242, arXiv: hep-th/00091881107.3918 | DOI | MR | Zbl | DOI | MR | Zbl

[42] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, JHEP, 07 (2012), 131, 21 pp., arXiv: 1203.5978 | DOI | MR

[43] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, Internat. J. Modern Phys. A, 27:19 (2012), 1250099, 85 pp., arXiv: 1204.4785 | DOI | MR | Zbl

[44] M. Aganagic, T. Ekholm, L. Ng, C. Vafa, Topological strings, D-model, and knot contact homology, arXiv: 1304.5778 | MR

[45] D. V. Galakhov, A. D. Mironov, A. Yu. Morozov, A. V. Smirnov, TMF, 172:1 (2012), 73–99 | DOI | DOI

[46] H. Murakami, JP J. Geom. Topol., 7:2 (2007), 249–269, arXiv: math/0502428 | MR | Zbl

[47] S. Garoufalidis, T. T. Q. Le, An analytic version of the Melvin–Morton–Rozansky conjecture, arXiv: math/0503641

[48] P. Melvin, H. Morton, Commun. Math. Phys., 169:3 (1995), 501–520 ; L. Rozansky, Adv. Math., 134:1 (1998), 1–31, arXiv: q-alg/9604005 | DOI | MR | Zbl | DOI | MR | Zbl

[49] K. Hikami, H. Murakami, Commun. Contemp. Math., 10, suppl. 1 (2008), 815–834, arXiv: 0711.2836 | DOI | MR | Zbl

[50] S. Gukov, P. Sułkowski, JHEP, 02 (2012), 070, 56 pp., arXiv: 1108.0002 | DOI | MR

[51] A. Mironov, A. Morozov, Sh. Shakirov, J. Phys. A, 45:35 (2012), 355202, 11 pp., arXiv: 1203.0667 | DOI | MR | Zbl

[52] E. Gorsky, “$q,t$–Catalan numbers and knot homology”, Zeta Functions in Algebra and Geometry, Contemporary Mathematics, 566, eds. A. Campillo, G. Cardona, A. Melle-Hernández, W. Veys, W. A. Zúñiga-Galindo, AMS, Providence, RI, 2012, 213–232, arXiv: 1003.0916 | DOI | MR | Zbl