Stationary model of the Universe with torsion
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 151-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On a four-dimensional pseudo-Riemannian manifold with the metric of a stationary model of the Universe, we construct a Riemann–Cartan structure with the automorphism group of maximum dimension. The torsion tensor of this structure is the sum of two parts: semisymmetric, aspiring to geometrization of the spin density of matter, and skew-symmetric, determining the torsion of a spatial section. We give a geometric interpretation of the spatial section torsion. We prove that the maximum dimension of the Lie group of automorphisms of a Riemann–Cartan space–time manifold with a semisymmetric or skew-symmetric connection is seven.
Keywords: Riemann–Cartan manifold
Mots-clés : automorphism, torsion tensor.
@article{TMF_2013_177_1_a7,
     author = {V. I. Panzhenskij},
     title = {Stationary model of {the~Universe} with torsion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {151--162},
     year = {2013},
     volume = {177},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a7/}
}
TY  - JOUR
AU  - V. I. Panzhenskij
TI  - Stationary model of the Universe with torsion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 151
EP  - 162
VL  - 177
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a7/
LA  - ru
ID  - TMF_2013_177_1_a7
ER  - 
%0 Journal Article
%A V. I. Panzhenskij
%T Stationary model of the Universe with torsion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 151-162
%V 177
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a7/
%G ru
%F TMF_2013_177_1_a7
V. I. Panzhenskij. Stationary model of the Universe with torsion. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 151-162. http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a7/

[1] Ya. B. Zeldovich, I. D. Novikov, Stroenie i evolyutsiya Vselennoi, Nauka, M., 1975

[2] I. A. Gordeeva, V. I. Panzhenskii, S. E. Stepanov, “Mnogoobraziya Rimana–Kartana”, Itogi nauki i tekhniki. Sovr. matem. i ee prilozh., 123, VINITI, M., 2009, 110–141 | MR

[3] K. Yano, S. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR

[4] L. P. Eizenkhart, Nepreryvnye gruppy, IL, M., 1947 | MR | Zbl

[5] Sh. Kobayasi, Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR | Zbl

[6] V. I. Panzhenskii, Matem. zametki, 85:5 (2009), 754–757 | DOI | DOI | MR | Zbl

[7] V. I. Panzhenskii, “Rimanovy prostranstva postoyannoi krivizny s krucheniem”, Geometriya v Odesse – 2008, v. 6, No. 2, Institut matematiki NAN Ukrainy, Kiev, 2009, 183–194 | MR

[8] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR