Generalized interaction in multigravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 137-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a general approach to describing the interaction in multigravity models in a $D$-dimensional space–time. We present various possibilities for generalizing the invariant volume. We derive the most general form of the interaction potential, which becomes a Pauli–Fierz-type model in the bigravity case. Analyzing this model in detail in the $(3{+}1)$-expansion formalism and also requiring the absence of ghosts leads to this bigravity model being completely equivalent to the Pauli–Fierz model. We thus in a concrete example show that introducing an interaction between metrics is equivalent to introducing the graviton mass.
Keywords: multigravity, bigravity, massive gravity, invariant volume, interaction potential
Mots-clés : Pauli–Fierz model.
@article{TMF_2013_177_1_a6,
     author = {S. A. Duplij and A. T. Kotvitskii},
     title = {Generalized interaction in multigravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {137--150},
     publisher = {mathdoc},
     volume = {177},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a6/}
}
TY  - JOUR
AU  - S. A. Duplij
AU  - A. T. Kotvitskii
TI  - Generalized interaction in multigravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 137
EP  - 150
VL  - 177
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a6/
LA  - ru
ID  - TMF_2013_177_1_a6
ER  - 
%0 Journal Article
%A S. A. Duplij
%A A. T. Kotvitskii
%T Generalized interaction in multigravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 137-150
%V 177
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a6/
%G ru
%F TMF_2013_177_1_a6
S. A. Duplij; A. T. Kotvitskii. Generalized interaction in multigravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 137-150. http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a6/