Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 93-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider several models of initial boundary-value problems for the Rosenau–Bürgers equation with different boundary conditions. For each of the problems, we prove the unique local solvability in the classical sense, obtain a sufficient condition for the blowup regime, and estimate the time of the solution decay. The proof is based on the well-known test-function method.
Keywords: blowup regime, local solvability, noncontinuable solution
Mots-clés : Rosenau–Bürgers equation.
@article{TMF_2013_177_1_a3,
     author = {A. A. Panin},
     title = {Local solvability and blowup of the~solution of {the~Rosenau{\textendash}B\"urgers} equation with different boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--110},
     year = {2013},
     volume = {177},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/}
}
TY  - JOUR
AU  - A. A. Panin
TI  - Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 93
EP  - 110
VL  - 177
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/
LA  - ru
ID  - TMF_2013_177_1_a3
ER  - 
%0 Journal Article
%A A. A. Panin
%T Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 93-110
%V 177
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/
%G ru
%F TMF_2013_177_1_a3
A. A. Panin. Local solvability and blowup of the solution of the Rosenau–Bürgers equation with different boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 93-110. http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/

[1] M. O. Korpusov, TMF, 170:3 (2012), 342–349 | DOI | DOI | MR | Zbl

[2] M. O. Korpusov, Nonlin. Anal., 75:4 (2012), 1737–1743 | DOI | MR | Zbl

[3] E. L. Mitidieri, S. I. Pokhozhaev, Tr. MIAN, 234 (2001), 3–383 | MR | Zbl

[4] H. A. Levine, Arch. Rational Mech. Anal., 51:3 (1973), 371–386 | MR | Zbl

[5] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl

[6] V. A. Galaktionov, S. I. Pokhozhaev, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | DOI | MR | Zbl

[7] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR