Local solvability and blowup of the~solution of the~Rosenau--B\"urgers equation with different boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 93-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider several models of initial boundary-value problems for the Rosenau–Bürgers equation with different boundary conditions. For each of the problems, we prove the unique local solvability in the classical sense, obtain a sufficient condition for the blowup regime, and estimate the time of the solution decay. The proof is based on the well-known test-function method.
Keywords:
blowup regime, local solvability, noncontinuable solution
Mots-clés : Rosenau–Bürgers equation.
Mots-clés : Rosenau–Bürgers equation.
@article{TMF_2013_177_1_a3,
author = {A. A. Panin},
title = {Local solvability and blowup of the~solution of {the~Rosenau--B\"urgers} equation with different boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {93--110},
publisher = {mathdoc},
volume = {177},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/}
}
TY - JOUR AU - A. A. Panin TI - Local solvability and blowup of the~solution of the~Rosenau--B\"urgers equation with different boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 93 EP - 110 VL - 177 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/ LA - ru ID - TMF_2013_177_1_a3 ER -
%0 Journal Article %A A. A. Panin %T Local solvability and blowup of the~solution of the~Rosenau--B\"urgers equation with different boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 93-110 %V 177 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/ %G ru %F TMF_2013_177_1_a3
A. A. Panin. Local solvability and blowup of the~solution of the~Rosenau--B\"urgers equation with different boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 93-110. http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a3/