Modifications of bundles, elliptic integrable systems, and related problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 3-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a construction of elliptic integrable systems based on bundles with nontrivial characteristic classes, especially attending to the bundle-modification procedure, which relates models corresponding to different characteristic classes. We discuss applications and related problems such as the Knizhnik–Zamolodchikov–Bernard equations, classical and quantum $R$-matrices, monopoles, spectral duality, Painlevé equations, and the classical–quantum correspondence. For an $SL(N,\mathbb C)$-bundle on an elliptic curve with nontrivial characteristic classes, we obtain equations of isomonodromy deformations.
Keywords: integrable system, Hitchin system, modification of bundles.
Mots-clés : Painlevé equation
@article{TMF_2013_177_1_a0,
     author = {A. V. Zotov and A. V. Smirnov},
     title = {Modifications of bundles, elliptic integrable systems, and related problems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--67},
     year = {2013},
     volume = {177},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/}
}
TY  - JOUR
AU  - A. V. Zotov
AU  - A. V. Smirnov
TI  - Modifications of bundles, elliptic integrable systems, and related problems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 3
EP  - 67
VL  - 177
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/
LA  - ru
ID  - TMF_2013_177_1_a0
ER  - 
%0 Journal Article
%A A. V. Zotov
%A A. V. Smirnov
%T Modifications of bundles, elliptic integrable systems, and related problems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 3-67
%V 177
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/
%G ru
%F TMF_2013_177_1_a0
A. V. Zotov; A. V. Smirnov. Modifications of bundles, elliptic integrable systems, and related problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 3-67. http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/

[1] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[2] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[3] N. Hitchin, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[4] A. Gorsky, N. Nekrasov, Elliptic Calogero–Moser system from two dimensional current algebra, arXiv: hep-th/9401021

[5] A. Levin, M. Olshanetsky, Commun. Math. Phys., 188:2 (1997), 449–466 | DOI | MR | Zbl

[6] A. Levin, M. Olshanetsky, A. Zotov, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: nlin/0110045 | DOI | MR | Zbl

[7] Yu. Chernyakov, A. Levin, M. Olshanetsky, A. Zotov, J. Phys. A, 39:39 (2006), 12083–12101, arXiv: nlin/0602043 | DOI | MR | Zbl

[8] I. M. Krichever, UMN, 32:6(198) (1977), 183–208 ; И. М. Кричевер, С. П. Новиков, УМН, 35:6(216) (1980), 47–68 ; Б. А. Дубровин, И. М. Кричевер, С. П. Новиков, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 4 (1985), 179–284 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[9] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, Теория солитонов: метод обратной задачи, Наука, М., 1980 | DOI | MR | Zbl | MR

[10] K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé, a Modern Theory of Special Functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR

[11] R. Conte (ed.), The Painlevé Property. One Century Later, CRM Series in Mathematical Physics, Springer, New York, 1999 | MR

[12] R. Garnier, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | DOI | MR | Zbl

[13] M. Jimbo, T. Miwa, K. Ueno, Physica D, 2:2 (1981), 306–352 | DOI | MR | Zbl

[14] M. Jimbo, T. Miwa, Physica D, 2:3 (1981), 407–448 | DOI | MR | Zbl

[15] M. Jimbo, T. Miwa, Physica D, 4:1 (1981), 26–46 | DOI | MR | Zbl

[16] A. Its, V. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 ; A. Fokas, A. Its, A. Kapaev, V. Novokshenov, Painlevé Transcendents: The Riemann–Hilbert Approach, AMS Mathematical Surveys and Monographs, 128, AMS, Providence, RI, 2006 | DOI | MR | Zbl | DOI | MR | Zbl

[17] P. Painlevé, C. R. Acad. Sci. (Paris), 143 (1906), 1111–01117

[18] Yu. Manin, Amer. Math. Soc. Transl. Ser. 2, 186 (1998), 131–151 | MR | Zbl

[19] V. I. Inozemtsev, Lett. Math. Phys., 17:1 (1989), 11–17 | DOI | MR | Zbl

[20] A. Levin, M. Olshanetsky, “Painlevé–Calogero correspondence”, Calogero–Moser–Sutherlend Models (Montréal, QC, March 10–15, 1997), CRM Series in Mathematical Physics, eds. J. F. van Diejen, L. Vinet, Springer, New York, 2000, 313–332 | MR

[21] G. Aminov, S. Arthamonov, A. Levin, M. Olshanetsky, A. Zotov, Painlevé Field Theory, Preprint ITEP-TH-53/12, arXiv: 1306.3265 | MR

[22] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, Commun. Math. Phys., 316:1 (2012), 1–44, arXiv: 1006.0702 | DOI | MR | Zbl

[23] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, J. Geom. Phys., 62:8 (2012), 1810–1850, arXiv: 1007.4127 | DOI | MR | Zbl

[24] I. M. Krichever, J. Soviet Math., 28:1 (1985), 51–90 ; И. М. Кричевер, Функц. анализ и его прил., 14:4 (1980), 45–54 | DOI | DOI | MR | Zbl

[25] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Zap. nauchn. sem. LOMI, 150 (1986), 104–118 | Zbl

[26] N. Nekrasov, Commun. Math. Phys., 180:3 (1996), 587–603 | DOI | MR | Zbl

[27] A. V. Zotov, A. M. Levin, TMF, 146:1 (2006), 55–64 | DOI | DOI | MR | Zbl

[28] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 4–6, Springer, Berlin–Heidelberg–New York, 2002 | MR | Zbl

[29] N. Nekrasov, S. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv: ; N. Nekrasov, A. Rosly, S. Shatashvili, Nucl. Phys. B Proc. Suppl., 216 (2011), 69–93, arXiv: 0908.40521103.3919 | MR | DOI | MR

[30] A. Levin, M. Olshanetsky, Commun. Math. Phys., 188:2 (1997), 449–466 | DOI | MR | Zbl

[31] M. Atiyah, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl

[32] I. Krichever, O. Babelon, E. Billey, M. Talon, Amer. Math. Soc. Transl. Ser. 2, 170 (1995), 83–119 | MR | Zbl

[33] A. A. Belavin, Nucl. Phys. B, 180:2 (1981), 189–200 ; А. А. Белавин, В. Г. Дринфельд, Функц. анализ и его прил., 16:3 (1982), 1–29 | DOI | MR | Zbl | DOI | MR | Zbl

[34] A. V. Zotov, SIGMA, 7 (2011), 067, 26 pp., arXiv: 1012.1072 | DOI | MR | Zbl

[35] F. Calogero, J. Math. Phys., 12 (1971), 419–436 ; Lett. Nuovo Cim., 13 (1975), 411 ; J. Moser, Advances in Math., 16 (1975), 197–220 | DOI | MR | DOI | DOI | MR | Zbl

[36] E. Markman, Compositio Math., 93:3 (1994), 255–290 | MR | Zbl

[37] C. Schweigert, Nucl. Phys. B, 492:3 (1997), 743–755 | DOI | MR | Zbl

[38] R. Friedman, J. Morgan, Holomorphic principal bundles over elliptic curves, arXiv: math/9811130

[39] I. Krichever, O. Babelon, E. Billey, M. Talon, Amer. Math. Soc. Transl. Ser. 2, 170 (1995), 83–119 | MR | Zbl

[40] A. V. Zotov, Yu. B. Chernyakov, TMF, 129:2 (2001), 258–277, arXiv: hep-th/0102069 | DOI | DOI | MR | Zbl

[41] Luen-Chau Li, Ping Xu, Commun. Math. Phys., 231:2 (2002), 257–286 | DOI | MR | Zbl

[42] E. Sklyanin, J. Phys. A, 21:10 (1988), 2375–2389 | DOI | MR | Zbl

[43] H. W. Braden, V. A. Dolgushev, M. A. Olshanetsky, A. V. Zotov, J. Phys. A, 36:25 (2003), 6979–7000, arXiv: hep-th/0301121 | DOI | MR | Zbl

[44] A. V. Zotov, A. M. Levin, M. A. Olshanetskii, Yu. B. Chernyakov, TMF, 156:2 (2008), 163–183, arXiv: 0710.1072 | DOI | DOI | MR | Zbl

[45] P. Etingof, O. Schiffmann, A. Varchenko, Lett. Math. Phys., 62 (2002), 143–158, arXiv: ; G. Kuroki T. Takebe, Comm. Math. Phys., 190 (1997), 1–56, arXiv: math.QA/0207157q-alg/9612033 | DOI | MR | Zbl | DOI | MR | Zbl

[46] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, SIGMA, 8 (2012), 095, 37 pp., arXiv: 1207.4385 | DOI | MR | Zbl

[47] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 ; E. Sklyanin, Quantum inverse scattering method. Selected topics, arXiv: ; P. Kulish, E. Sklyanin, Phys. Lett. A, 70:5–6 (1979), 461–463 ; A. Izergin, V. Korepin, Commun. Math. Phys., 79:3 (1981), 303–316 ; L. D. Faddeev, Lectures on Quantum Inverse Scattering Method, World Sci., Singapore, 1990 hep-th/9211111 | DOI | MR | MR | DOI | MR | DOI | MR | MR

[48] A. A. Belavin, Nucl. Phys. B, 180:2 (1981), 189–200 ; А. А. Белавин, В. Г. Дринфельд, Функц. анализ и его прил., 16:3 (1982), 1–29 | DOI | MR | Zbl | DOI | MR | Zbl

[49] G. Felder, C. Wieczerkowski, Commun. Math. Phys., 176:1 (1996), 133–161 ; G. Felder, “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), ed. S. D. Chatterji, Birkhäuser, Boston, 1995, 1247–1255 | DOI | MR | Zbl | DOI | MR

[50] E. K. Sklyanin, Algebra i analiz, 6:2 (1994), 227–237, arXiv: hep-th/9308060 | MR | Zbl

[51] E. Billey, J. Avan, O. Babelon, Phys. Lett. A, 186:1–2 (1994), 114–118 | DOI | MR | Zbl

[52] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, J. Phys. A, 46:3 (2013), 035201, 25 pp., arXiv: 1208.5750 | DOI | MR | Zbl

[53] A. V. Zotov, EChAYa, 37:3 (2006), 759–843 ; А. В. Смирнов, ТМФ, 158:3 (2009), 355–369 | DOI | DOI | DOI | MR | Zbl

[54] I. Krichever, Commun. Math. Phys., 229:2 (2002), 229–269 | DOI | MR | Zbl

[55] A. Zotov, Lett. Math. Phys., 67:2 (2004), 153–165, arXiv: hep-th/0310260 | DOI | MR | Zbl

[56] A. Levin, M. Olshanetsky, A. Zotov, Commun. Math. Phys., 268:1 (2006), 67–103, arXiv: ; A. Levin, A. Zotov, Amer. Math. Soc. Transl. Ser. 2, 221 (2007), 173–183 ; M. A. Olshanetsky, A. V. Zotov, “Isomonodromic problems on elliptic curve, rigid tops and reflection equations”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, Kobe Univ., Kobe, Japan, 2005, 149–171 math/0508058 | DOI | MR | Zbl | MR | Zbl

[57] A. Smirnov, Central Eur. J. Phys., 8:4 (2010), 542–554, arXiv: ; G. Aminov, S. Arthamonov, J. Phys. A, 44 (2011), 075201, 34 pp. 0903.1466 | DOI | DOI | MR | Zbl

[58] A. Kapustin, E. Witten, Electric-magnetic duality and the geometric Langlands program, arXiv: hep-th/0604151 | MR

[59] A. M. Levin, M. A. Olshanetsky, A. V. Zotov, SIGMA, 5 (2009), 065, 22 pp., arXiv: 0811.3056 | MR | Zbl

[60] H. Flaschka, A. Newell, Commun. Math. Phys., 76:1 (1980), 65–116 | DOI | MR | Zbl

[61] I. M. Krichever, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl

[62] A. M. Levin, M. A. Olshanetskii, TMF, 123:2 (2000), 237–263 | DOI | DOI | MR | Zbl

[63] R. Ward, “Integrable systems and twistors”, Integrable Systems, Oxford Graduate Texts in Mathematics, 4, Oxford Univ. Press, New York, 1999 | MR | Zbl

[64] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, M., 1978 | MR | Zbl

[65] K. Takasaki, J. Math. Phys., 42:3 (2001), 1443–1473 | DOI | MR | Zbl

[66] A. Zabrodin, A. Zotov, J. Math. Phys., 53:7 (2012), 073507, 19 pp. ; 073508, 19 pp., arXiv: 1107.5672 | DOI | MR | Zbl | DOI | MR | Zbl

[67] B. I. Suleimanov, Differents. uravneniya, 30:5 (1994), 791–796 | MR | Zbl

[68] B. I. Suleimanov, TMF, 156:3 (2008), 364–377 | DOI | DOI | MR | Zbl

[69] A. Zabrodin, A. Zotov, Classical-quantum correspondence and functional relations for Painlevé equations, arXiv: 1212.5813 | MR

[70] P. Painlevé, Bull. Soc. Math. Phys. France, 28 (1900), 201–261 ; Acta Math., 25:1 (1902), 1–85 | DOI | MR | Zbl | DOI | MR

[71] R. Fuchs, C. R. Acad. Sci. (Paris), 141 (1905), 555–558

[72] D. Gaiotto, JHEP, 08 (2012), 034, 57 pp., arXiv: ; L. F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: ; A. Mironov, A. Morozov, JHEP, 04 (2010), 040, 15 pp., arXiv: ; J. Phys. A, 43:10 (2010), 195401, 11 pp., arXiv: 0904.27150906.32190910.56700911.2396 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[73] G. Moore, N. Nekrasov, S. Shatashvili, Nucl. Phys. B, 534:3 (1998), 549–611, arXiv: ; A. Losev, N. Nekrasov, S. Shatashvili, Testing Seiberg–Witten solution, arXiv: ; Commun. Math. Phys., 209:1 (2000), 77–95, arXiv: ; 97–121, arXiv: hep-th/9711108hep-th/9801061hep-th/9803265hep-th/9712241 | DOI | MR | MR | DOI | DOI | MR

[74] A. Mironov, A. Morozov, Y. Zenkevich, A. Zotov, Pisma v ZhETF, 97:1 (2013), 49–55, arXiv: 1204.0913 | DOI

[75] A. Mironov, A. Morozov, B. Runov, Y. Zenkevich, A. Zotov, Lett. Math. Phys., 103:3 (2013), 299–329, arXiv: 1206.6349 | DOI | MR | Zbl

[76] M. R. Adams, J. Harnad, J. Hurtubise, Lett. Math. Phys., 20:4 (1990), 299–308 ; J. Harnad, Commun. Math. Phys., 166:2 (1994), 337–365, arXiv: hep-th/9301076 | DOI | MR | Zbl | DOI | MR | Zbl

[77] D. Mumford, Tata Lectures on Theta. I, II, Progress in Mathematics, 28, Birkhäuser, Boston, MA, 1983, 1984 | DOI | MR | Zbl

[78] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR