Modifications of bundles, elliptic integrable systems, and related problems
Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 3-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a construction of elliptic integrable systems based on bundles with nontrivial characteristic classes, especially attending to the bundle-modification procedure, which relates models corresponding to different characteristic classes. We discuss applications and related problems such as the Knizhnik–Zamolodchikov–Bernard equations, classical and quantum $R$-matrices, monopoles, spectral duality, Painlevé equations, and the classical–quantum correspondence. For an $SL(N,\mathbb C)$-bundle on an elliptic curve with nontrivial characteristic classes, we obtain equations of isomonodromy deformations.
Keywords:
integrable system, Painlevé equation, Hitchin system, modification of bundles.
@article{TMF_2013_177_1_a0,
author = {A. V. Zotov and A. V. Smirnov},
title = {Modifications of bundles, elliptic integrable systems, and related problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--67},
publisher = {mathdoc},
volume = {177},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/}
}
TY - JOUR AU - A. V. Zotov AU - A. V. Smirnov TI - Modifications of bundles, elliptic integrable systems, and related problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 3 EP - 67 VL - 177 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/ LA - ru ID - TMF_2013_177_1_a0 ER -
A. V. Zotov; A. V. Smirnov. Modifications of bundles, elliptic integrable systems, and related problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 177 (2013) no. 1, pp. 3-67. http://geodesic.mathdoc.fr/item/TMF_2013_177_1_a0/