Electron scattering by a~crystal layer
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 444-457

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the one-particle discrete Schrödinger operator $H$ with a periodic potential perturbed by a function $\varepsilon W$ that is periodic in two variables and exponentially decreasing in the third variable. Here, $\varepsilon$ is a small parameter. We study the scattering problem for $H$ near the point of extremum with respect to the third quasimomentum coordinate for a certain eigenvalue of the Schrödinger operator with a periodic potential in the cell, in other words, for the small perpendicular component of the angle of particle incidence on the potential barrier $\varepsilon W$. We obtain simple formulas for the transmission and reflection probabilities.
Keywords: discrete Schrödinger operator, perturbed periodic operator, transmission probability, reflection probability.
@article{TMF_2013_176_3_a8,
     author = {T. S. Tinyukova and Yu. P. Chuburin},
     title = {Electron scattering by a~crystal layer},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--457},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/}
}
TY  - JOUR
AU  - T. S. Tinyukova
AU  - Yu. P. Chuburin
TI  - Electron scattering by a~crystal layer
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 444
EP  - 457
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/
LA  - ru
ID  - TMF_2013_176_3_a8
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%A Yu. P. Chuburin
%T Electron scattering by a~crystal layer
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 444-457
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/
%G ru
%F TMF_2013_176_3_a8
T. S. Tinyukova; Yu. P. Chuburin. Electron scattering by a~crystal layer. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/