Electron scattering by a crystal layer
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 444-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the one-particle discrete Schrödinger operator $H$ with a periodic potential perturbed by a function $\varepsilon W$ that is periodic in two variables and exponentially decreasing in the third variable. Here, $\varepsilon$ is a small parameter. We study the scattering problem for $H$ near the point of extremum with respect to the third quasimomentum coordinate for a certain eigenvalue of the Schrödinger operator with a periodic potential in the cell, in other words, for the small perpendicular component of the angle of particle incidence on the potential barrier $\varepsilon W$. We obtain simple formulas for the transmission and reflection probabilities.
Keywords: discrete Schrödinger operator, perturbed periodic operator, transmission probability, reflection probability.
@article{TMF_2013_176_3_a8,
     author = {T. S. Tinyukova and Yu. P. Chuburin},
     title = {Electron scattering by a~crystal layer},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {444--457},
     year = {2013},
     volume = {176},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/}
}
TY  - JOUR
AU  - T. S. Tinyukova
AU  - Yu. P. Chuburin
TI  - Electron scattering by a crystal layer
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 444
EP  - 457
VL  - 176
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/
LA  - ru
ID  - TMF_2013_176_3_a8
ER  - 
%0 Journal Article
%A T. S. Tinyukova
%A Yu. P. Chuburin
%T Electron scattering by a crystal layer
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 444-457
%V 176
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/
%G ru
%F TMF_2013_176_3_a8
T. S. Tinyukova; Yu. P. Chuburin. Electron scattering by a crystal layer. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 444-457. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a8/

[1] Yu. P. Chuburin, TMF, 110:3 (1997), 443–453 | DOI | MR | Zbl

[2] Yu. P. Chuburin, Commun. Math. Phys., 249:3 (2004), 497–510 | DOI | MR | Zbl

[3] Yu. P. Chuburin, TMF, 72:1 (1987), 120–131 | MR

[4] M. Vojta, Adv. Phys., 58:6 (2009), 699–820, arXiv: 0901.3145 | DOI

[5] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[6] L. Y. Baranova, Y. P. Chuburin, J. Phys. A, 41:43 (2008), 435205, 11 pp. | DOI | MR | Zbl

[7] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[8] Yu. P. Chuburin, TMF, 98:1 (1994), 38–47 | MR | Zbl

[9] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR

[10] L. Schwartz, Ann. Inst. Fourier, 7 (1957), 1–141 ; 8 (1958), 1–209 | DOI | MR | Zbl | DOI | Zbl

[11] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of the American Mathematical Society, 16, AMS, Providence, RI, 1955 | DOI | MR

[12] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 3, Teoriya rasseyaniya, Mir, M., 1982 | MR

[14] M. Z. Hasan, C. L. Kane, Rev. Modern Phys., 82:4 (2010), 3045–3067, arXiv: 1002.3895 | DOI