Band structure of the spectra of Hamiltonians of regular polynucleotide duplexes
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 429-443 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the band structure of the spectra of Hamiltonians of regular DNA duplexes and show that in single-stranded periodic polynucleotides whose period is determined by the number $m$ of nucleotides in an elementary cell, the spectrum consists of $m$ nonintersecting energy bands. In DNA duplexes, the number of energy bands is equal to $2m$, and the bands can intersect. Discrete energy levels can be present in forbidden bands in the case of (semi)bounded chains or duplexes.
Keywords: block three-diagonal matrix, DNA, Schrödinger equation, Tamm level.
@article{TMF_2013_176_3_a7,
     author = {V. D. Lakhno and V. B. Sultanov},
     title = {Band structure of the~spectra of {Hamiltonians} of regular polynucleotide duplexes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--443},
     year = {2013},
     volume = {176},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a7/}
}
TY  - JOUR
AU  - V. D. Lakhno
AU  - V. B. Sultanov
TI  - Band structure of the spectra of Hamiltonians of regular polynucleotide duplexes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 429
EP  - 443
VL  - 176
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a7/
LA  - ru
ID  - TMF_2013_176_3_a7
ER  - 
%0 Journal Article
%A V. D. Lakhno
%A V. B. Sultanov
%T Band structure of the spectra of Hamiltonians of regular polynucleotide duplexes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 429-443
%V 176
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a7/
%G ru
%F TMF_2013_176_3_a7
V. D. Lakhno; V. B. Sultanov. Band structure of the spectra of Hamiltonians of regular polynucleotide duplexes. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 429-443. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a7/

[1] D. D. Eley, D. I. Spivey, Trans. Faraday Soc., 58 (1962), 411–415 | DOI

[2] V. D. Lakhno, Internat. J. Quantum Chem., 108:11 (2008), 1970–1981 | DOI

[3] A. Offenhausser, R. Rinald (Eds.), Nanobioelectronics – for Electronics, Biology and Medicine, Springer, New York, 2009

[4] F. D. Lewis, Y. Wu, J. Photochem. Photobiol. C, 2:1 (2001), 1–16 | DOI

[5] A. A. Voityuk, N. Rösch, M. Bixon, J. Jortner, J. Phys. Chem. B, 104:41 (2000), 9740–9745 | DOI

[6] A. A. Voityuk, J. Jortner, M. Bixon, N. Rösch, J. Chem. Phys., 114:13 (2001), 5614–5620 | DOI

[7] Yu. M. Berezanskii, Razlozheniya po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965 | MR | MR | Zbl

[8] F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | MR | Zbl

[9] L. D. Faddeev, O. A. Yakubovskii, Lektsii po kvantovoi mekhanike dlya studentov-matematikov, RKhD, M., 2001 | MR | Zbl

[10] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, 72, AMS, Providence, RI, 2009 | MR | Zbl

[11] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR | MR | Zbl

[12] A. Sinap, W. Van Assche, J. Comput. Appl. Math., 66:1–2 (1996), 27–52 | DOI | MR | Zbl

[13] M. Zygmunt, Linear Algebra Appl., 340:1–3 (2002), 155–168 | DOI | MR | Zbl

[14] I. E. Tamm, “O vozmozhnykh svyazannykh sostoyaniyakh elektronov na poverkhnosti kristalla (1932\;g.)”, Sobranie nauchnykh trudov, v. 1, Nauka, M., 1975, 216–225

[15] S. Devison, Dzh. Levin, Poverkhnostnye (tammovskie) sostoyaniya, Mir, M., 1973

[16] V. D. Lakhno, V. B. Sultanov, J. Appl. Phys., 112:6 (2012), 064701, 8 pp. | DOI

[17] V. D. Lakhno, N. S. Fialko, Pisma v ZhETF, 78:5 (2003), 786–788 | DOI

[18] K. Iguchi, J. Phys. Soc. Japan, 70:2 (2001), 593–597 | DOI

[19] R. Gutiérrez, S. Mohapatra, H. Cohen, D. Porath, G. Cuniberti, Phys. Rev. B, 74:23 (2006), 235105, 10 pp. | DOI

[20] K. Iguchi, Internat. J. Modern Phys. B, 18:13 (2004), 1845–1910 | DOI

[21] K. Iguchi, Internat. J. Modern Phys. B, 11:20 (1997), 2405–2423 | DOI | MR

[22] D. Klotsa, R. A. Römer, M. S. Turner, Biophys. J., 89 (2005), 2187–2198, arXiv: q-bio/0504004 | DOI

[23] H. Yamada, Internat. J. Modern Phys. B, 18:12 (2004), 1697–1716 | DOI

[24] E. Maciá, S. Roche, Nanotechnology, 17:12 (2006), 3002–3007 | DOI

[25] S. Roche, D. Bicout, E. Maciá, E. Kats, Phys. Rev. Lett., 91:22 (2003), 228101, 4 pp. | DOI

[26] H. Yamada, E. B. Starikov, D. Hennig, J. F. R. Archilla, Eur. Phys. J. E, 17:2 (2005), 149–154 | DOI

[27] M. Unge, S. Stafström, Nano Letters, 3:10 (2003), 1417–1420 | DOI

[28] H. Yamada, Phys. Lett. A, 332:1–2 (2004), 65–73 | DOI | Zbl

[29] S. Roche, Phys. Rev. Lett., 91:10 (2003), 108101, 4 pp. | DOI

[30] A. V. Malyshev, E. Diaz, F. Dominguez-Adame, V. A. Malyshev, J. Phys.: Condens. Matter, 21:33 (2009), 335105, 5 pp. | DOI

[31] Kh.-Yu. Shtokman, Kvantovyi khaos, Fizmatlit, M., 2004 | MR

[32] A. Bende, F. Bogár, J. Ladik, Solid State Commun., 151:4 (2011), 301–305 | DOI

[33] E. Diaz, J. Chem. Phys., 128 (2008), 175101–175108 | DOI

[34] E. Artacho, M. Machado, D. Sánchez-Portal, P. Ordejón, J. M. Soler, Molecular Phys., 101 (2003), 1587–1594 | DOI

[35] E. Diaz, A. V. Malyshev, F. Dominguez-Adame, Phys. Rev. B, 76:20 (2007), 205117, 5 pp. | DOI