Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 417-428

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two-particle Schrödinger operator $H(k)$ on a three-dimensional lattice $\mathbb Z^3$ (here $k$ is the total quasimomentum of a two-particle system, $k\in\mathbb{T}^3:=(-\pi,\pi]^3$). We show that for any $k\in S=\mathbb{T}^3\setminus(-\pi,\pi)^3$, there is a potential $\hat v$ such that the two-particle operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ accumulating near the left boundary $m(k)$ of the continuous spectrum. We describe classes of potentials $W(j)$ and $W(ij)$ and manifolds $S(j)\subset S$, $i,j\in\{1,2,3\}$, such that if $k\in S(3)$, $(k_2,k_3)\in(-\pi,\pi)^2$, and $\hat v\in W(3)$, then the operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ with an asymptotic exponential form as $n\to\infty$ and if $k\in S(i)\cap S(j)$ and $\hat v\in W(ij)$, then the eigenvalues $z_{nm}(k)$ of $H(k)$ can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.
Keywords: Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.
@article{TMF_2013_176_3_a6,
     author = {J. I. Abdullaev and B. U. Mamirov},
     title = {Asymptotic behavior of eigenvalues of the~two-particle discrete {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--428},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/}
}
TY  - JOUR
AU  - J. I. Abdullaev
AU  - B. U. Mamirov
TI  - Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 417
EP  - 428
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/
LA  - ru
ID  - TMF_2013_176_3_a6
ER  - 
%0 Journal Article
%A J. I. Abdullaev
%A B. U. Mamirov
%T Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 417-428
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/
%G ru
%F TMF_2013_176_3_a6
J. I. Abdullaev; B. U. Mamirov. Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 417-428. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/