Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 417-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider two-particle Schrödinger operator $H(k)$ on a three-dimensional lattice $\mathbb Z^3$ (here $k$ is the total quasimomentum of a two-particle system, $k\in\mathbb{T}^3:=(-\pi,\pi]^3$). We show that for any $k\in S=\mathbb{T}^3\setminus(-\pi,\pi)^3$, there is a potential $\hat v$ such that the two-particle operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ accumulating near the left boundary $m(k)$ of the continuous spectrum. We describe classes of potentials $W(j)$ and $W(ij)$ and manifolds $S(j)\subset S$, $i,j\in\{1,2,3\}$, such that if $k\in S(3)$, $(k_2,k_3)\in(-\pi,\pi)^2$, and $\hat v\in W(3)$, then the operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ with an asymptotic exponential form as $n\to\infty$ and if $k\in S(i)\cap S(j)$ and $\hat v\in W(ij)$, then the eigenvalues $z_{nm}(k)$ of $H(k)$ can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.
Keywords: Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.
@article{TMF_2013_176_3_a6,
     author = {J. I. Abdullaev and B. U. Mamirov},
     title = {Asymptotic behavior of eigenvalues of the~two-particle discrete {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--428},
     year = {2013},
     volume = {176},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/}
}
TY  - JOUR
AU  - J. I. Abdullaev
AU  - B. U. Mamirov
TI  - Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 417
EP  - 428
VL  - 176
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/
LA  - ru
ID  - TMF_2013_176_3_a6
ER  - 
%0 Journal Article
%A J. I. Abdullaev
%A B. U. Mamirov
%T Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 417-428
%V 176
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/
%G ru
%F TMF_2013_176_3_a6
J. I. Abdullaev; B. U. Mamirov. Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 417-428. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/

[1] V. N. Efimov, YaF, 12:5 (1970), 1080–1091

[2] S. P. Merkurev, L. D Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | Zbl

[3] R. D. Amado, J. V Noble, Phys. Rev. D, 5:8 (1972), 1992–2002 | DOI

[4] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[5] Yu. N. Ovchinnikov, I. M Sigal, Ann. Physics, 123:2 (1989), 274–295 | DOI | MR

[6] H. Tamura, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl

[7] A. V. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[8] G. M. Zhislin, TMF, 134:2 (2003), 273–288 | DOI | DOI | MR | Zbl

[9] K. Pankrashkin, “Variational principle for Hamiltonians with degenerate bottom”, Mathematical Results in Quantum Mechanics (Moieciu, Romania, 10–15 September, 2007), eds. I. Beltita, G. Nenciu, R. Purice, World Sci., Singapore, 2008, 231–240, arXiv: 0710.4790 | DOI | MR | Zbl

[10] P. A. Faria da Viega, L. Ioriatti, M. O'Carrol, Phys. Rev. E (3), 66:1 (2002), 016130, 9 pp. | DOI | MR

[11] Zh. I. Abdullaev, S. N. Lakaev, TMF, 136:2 (2003), 231–245 | DOI | DOI | MR | Zbl

[12] Zh. I. Abdullaev, Z. E. Muminov, Dokl. AN RUz, 3 (2004), 4–8

[13] M. Rid, B. Saimon, Metody sovpemennoi matematicheskoi fiziki, v. 4, Analiz opepatopov, Mir, M., 1982 | MR | MR | Zbl