Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 417-428
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two-particle Schrödinger operator $H(k)$ on a three-dimensional lattice $\mathbb Z^3$ (here $k$ is the total quasimomentum of a two-particle system, $k\in\mathbb{T}^3:=(-\pi,\pi]^3$). We show that for any $k\in S=\mathbb{T}^3\setminus(-\pi,\pi)^3$, there is a potential $\hat v$ such that the two-particle operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ accumulating near the left boundary $m(k)$ of the continuous spectrum. We describe classes of potentials $W(j)$ and $W(ij)$ and manifolds $S(j)\subset S$, $i,j\in\{1,2,3\}$, such that if $k\in S(3)$, $(k_2,k_3)\in(-\pi,\pi)^2$, and $\hat v\in W(3)$, then the operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ with an asymptotic exponential form as $n\to\infty$ and if $k\in S(i)\cap S(j)$ and $\hat v\in W(ij)$, then the eigenvalues $z_{nm}(k)$ of $H(k)$ can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.
Keywords:
Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.
@article{TMF_2013_176_3_a6,
author = {J. I. Abdullaev and B. U. Mamirov},
title = {Asymptotic behavior of eigenvalues of the~two-particle discrete {Schr\"odinger} operator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {417--428},
publisher = {mathdoc},
volume = {176},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/}
}
TY - JOUR AU - J. I. Abdullaev AU - B. U. Mamirov TI - Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 417 EP - 428 VL - 176 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/ LA - ru ID - TMF_2013_176_3_a6 ER -
%0 Journal Article %A J. I. Abdullaev %A B. U. Mamirov %T Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 417-428 %V 176 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/ %G ru %F TMF_2013_176_3_a6
J. I. Abdullaev; B. U. Mamirov. Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 417-428. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a6/