Mots-clés : Moutard transformation
@article{TMF_2013_176_3_a5,
author = {I. A. Taimanov and S. P. Tsarev},
title = {Faddeev eigenfunctions for two-dimensional {Schr\"odinger} operators via {the~Moutard} transformation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {408--416},
year = {2013},
volume = {176},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/}
}
TY - JOUR AU - I. A. Taimanov AU - S. P. Tsarev TI - Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 408 EP - 416 VL - 176 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/ LA - ru ID - TMF_2013_176_3_a5 ER -
%0 Journal Article %A I. A. Taimanov %A S. P. Tsarev %T Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 408-416 %V 176 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/ %G ru %F TMF_2013_176_3_a5
I. A. Taimanov; S. P. Tsarev. Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 408-416. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/
[1] I. A. Taimanov, S. P. Tsarev, TMF, 157:2 (2008), 188–207 | DOI | DOI | MR | Zbl
[2] L. D. Faddeev, Dokl. AN SSSR, 165:3 (1965), 514–517 | Zbl
[3] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 3, VINITI, M., 1974, 93–180 | DOI | MR | Zbl
[4] R. G. Novikov, G. M. Khenkin, UMN, 42:3(255) (1987), 93–152 | DOI | MR | Zbl
[5] P. G. Grinevich, R. G. Novikov, Phys. Lett. A, 376:12–13 (2012), 1102–1106, arXiv: 1110.3157 | DOI | MR | Zbl
[6] P. G. Grinevich, R. G. Novikov, Faddeev eigenfunctions for multipoint potentials, arXiv: 1211.0292
[7] P. G. Grinevich, TMF, 69:2 (1986), 307–310 | DOI | MR | Zbl
[8] P. G. Grinevich, S. P. Novikov, Funkts. analiz i ego pril., 22:1 (1988), 23–33 | DOI | MR | Zbl
[9] I. N. Vekua, Obobschennye analiticheskie funktsii, Nauka, M., 1959 | MR | MR | Zbl
[10] R. G. Novikov, J. Funct. Anal., 103:2 (1992), 409–463 | DOI | MR | Zbl
[11] M. Boiti, J. J. P. Leon, M. Manna, F. Pempinelli, Inverse Problems, 3:1 (1987), 25–36 | DOI | MR | Zbl
[12] H.-C. Hu, S.–Y. Lou, Q.-P. Liu, Chinese Phys. Lett., 20:9 (2003), 1413–1415 | DOI | MR
[13] A. P. Veselov, S. P. Novikov, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl
[14] P. A. Perry, Miura maps and inverse scattering for the Novikov–Veselov equation, arXiv: 1201.2385 | MR
[15] M. Music, P. A. Perry, S. Siltanen, Exceptional circles of radial potentials, arXiv: 1211.3520 | MR