Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 408-416

Voir la notice de l'article provenant de la source Math-Net.Ru

We demonstrate how the Moutard transformation of two-dimensional Schrödinger operators acts on the Faddeev eigenfunctions on the zero-energy level and present some explicitly computed examples of such eigenfunctions for smooth rapidly decaying potentials of operators with a nontrivial kernel and for deformed potentials corresponding to blowup solutions of the Novikov–Veselov equation.
Keywords: Schrödinger operator, Faddeev eigenfunction, scattering data.
Mots-clés : Moutard transformation
@article{TMF_2013_176_3_a5,
     author = {I. A. Taimanov and S. P. Tsarev},
     title = {Faddeev eigenfunctions for two-dimensional {Schr\"odinger} operators via {the~Moutard} transformation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--416},
     publisher = {mathdoc},
     volume = {176},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/}
}
TY  - JOUR
AU  - I. A. Taimanov
AU  - S. P. Tsarev
TI  - Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 408
EP  - 416
VL  - 176
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/
LA  - ru
ID  - TMF_2013_176_3_a5
ER  - 
%0 Journal Article
%A I. A. Taimanov
%A S. P. Tsarev
%T Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 408-416
%V 176
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/
%G ru
%F TMF_2013_176_3_a5
I. A. Taimanov; S. P. Tsarev. Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 408-416. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/