Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 408-416
Voir la notice de l'article provenant de la source Math-Net.Ru
We demonstrate how the Moutard transformation of two-dimensional Schrödinger operators acts on the Faddeev eigenfunctions on the zero-energy level and present some explicitly computed examples of such eigenfunctions for smooth rapidly decaying potentials of operators with a nontrivial kernel and for deformed potentials corresponding to blowup solutions of the Novikov–Veselov equation.
Keywords:
Schrödinger operator, Faddeev eigenfunction, scattering data.
Mots-clés : Moutard transformation
Mots-clés : Moutard transformation
@article{TMF_2013_176_3_a5,
author = {I. A. Taimanov and S. P. Tsarev},
title = {Faddeev eigenfunctions for two-dimensional {Schr\"odinger} operators via {the~Moutard} transformation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {408--416},
publisher = {mathdoc},
volume = {176},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/}
}
TY - JOUR AU - I. A. Taimanov AU - S. P. Tsarev TI - Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 408 EP - 416 VL - 176 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/ LA - ru ID - TMF_2013_176_3_a5 ER -
%0 Journal Article %A I. A. Taimanov %A S. P. Tsarev %T Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 408-416 %V 176 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/ %G ru %F TMF_2013_176_3_a5
I. A. Taimanov; S. P. Tsarev. Faddeev eigenfunctions for two-dimensional Schr\"odinger operators via the~Moutard transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 408-416. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a5/