Bigravity in the Kuchar̆ Hamiltonian formalism: The general case
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 393-407 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the Hamiltonian formalism of bigravity and bimetric theories for the general form of the interaction potential of two metrics. When studying the role of lapse and shift functions in theories with two metrics, we naturally use the Kuchar̆ formalism in which these functions are independent of the choice of the space–time coordinate system. We find conditions on the potential necessary and sufficient for the existence of four first-class constraints. These constraints realize a well-known hypersurface deformation algebra in the framework of the formalism of Dirac brackets constructed on the base of all second-class constraints. Fixing one of the metrics, we obtain a bimetric theory not containing first-class constraints. Conserved quantities corresponding to symmetries of the background metric can then be expressed ultralocally in terms of the metric interaction potential.
Keywords: bigravity, bimetric theory, massive gravity, Hamiltonian formalism, gravity theory.
@article{TMF_2013_176_3_a4,
     author = {V. O. Soloviev and M. V. Chichikina},
     title = {Bigravity in {the~Kuchar̆} {Hamiltonian} formalism: {The~general} case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {393--407},
     year = {2013},
     volume = {176},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a4/}
}
TY  - JOUR
AU  - V. O. Soloviev
AU  - M. V. Chichikina
TI  - Bigravity in the Kuchar̆ Hamiltonian formalism: The general case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 393
EP  - 407
VL  - 176
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a4/
LA  - ru
ID  - TMF_2013_176_3_a4
ER  - 
%0 Journal Article
%A V. O. Soloviev
%A M. V. Chichikina
%T Bigravity in the Kuchar̆ Hamiltonian formalism: The general case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 393-407
%V 176
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a4/
%G ru
%F TMF_2013_176_3_a4
V. O. Soloviev; M. V. Chichikina. Bigravity in the Kuchar̆ Hamiltonian formalism: The general case. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 393-407. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a4/

[1] T. Damour, I. Kogan, Phys. Rev. D, 66:10 (2002), 104024, 17 pp., arXiv: hep-th/0206042 | DOI | MR

[2] N. Rosen, Phys. Rev., 57:2 (1940), 147–150 ; 150–153 ; Ann. Phys., 22:1 (1963), 1–11 ; Gen. Relativ. Grav., 4:6 (1973), 435–447 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR | Zbl

[3] G. D'Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava, A. J. Tolley, Phys. Rev. D, 84:12, 124046, 11 pp., arXiv: 1108.5231 | DOI

[4] C. de Rham, G. Gabadadze, A. J. Tolley, Phys. Rev. Lett., 106:23 (2011), 231101, 4 pp., arXiv: ; Phys. Lett. B, 711:2 (2012), 190–195, arXiv: 1011.12321107.3820 | DOI | DOI | MR

[5] S. F. Hassan, R. A. Rosen, Phys. Rev. Lett., 108 (2012), 041101, 4 pp., arXiv: 1106.3344 | DOI

[6] R. Arnowitt, S. Deser, Ch. W. Misner, “The dynamics of general relativity”, Gravitation: An introduction to Current Research, ed. L. Witten, John Wiley Sons, New York, 1962, 227–265, arXiv: (Einshteinovskii sbornik, Nauka, M., 1967, 233) gr-qc/0405109 | DOI | MR

[7] K. Kuchar̆, J. Math. Phys., 17:5 (1976), 777–791 ; 792–800 ; 801–820 ; 18:8 (1977), 1589–1597 | DOI | MR | DOI | DOI | DOI

[8] V. O. Solovev, EChAYa, 19 (1988), 1115–1153 | MR

[9] P. Dirak, Lektsii po kvantovoi mekhanike, Mir, M., 1968

[10] D. G. Boulware, S. Deser, Phys. Rev. D, 6:12 (1972), 3368–3382 | DOI

[11] V. A. Rubakov, P. G. Tinyakov, UFN, 178:8 (2008), 785–822 | DOI | DOI

[12] D. Blas, Aspects of infrared modifications of gravity, arXiv: 0809.3744

[13] A. Mironov, S. Mironov, A. Morozov, A. Morozov, Resolving puzzles of massive gravity with and without violation of Lorentz symmetry, arXiv: 0910.5243 | MR

[14] K. Hinterbichler, Rev. Modern Phys., 84:2 (2012), 671–710, arXiv: 1105.3735 | DOI

[15] C. J. Isham, A. Salam, J. Strathdee, Phys. Lett. B, 31:5 (1970), 300–302 ; Phys. Rev. D, 3:4 (1971), 867–873 | DOI | MR | DOI | MR

[16] J. Kluson, Hamiltonian formalism of particular bimetric gravity model, arXiv: 1211.6267

[17] J. Kluson, Hamiltonian Formalism of General Bimetric Gravity, arXiv: 1303.1652

[18] V. O. Soloviev, M.V. Tchichikina, Bigravity in Kuchar's Hamiltonian formalism. 2. The special case, arXiv: 1302.5096