A note on almost causality and reflectingness of space–time
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 366-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly review the concepts of almost causality and the conditions under which space–time is reflecting and distinguishing. We propose some relations between these conditions and also prove the propositions using a constructive approach.
Keywords: Lorenzian geometry, space–time, causality, almost causality, reflectingness, distinguishing space–time.
@article{TMF_2013_176_3_a1,
     author = {B. S. Choudhury and H. Sh. Mondal},
     title = {A~note on almost causality and reflectingness of space{\textendash}time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {366--371},
     year = {2013},
     volume = {176},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a1/}
}
TY  - JOUR
AU  - B. S. Choudhury
AU  - H. Sh. Mondal
TI  - A note on almost causality and reflectingness of space–time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 366
EP  - 371
VL  - 176
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a1/
LA  - ru
ID  - TMF_2013_176_3_a1
ER  - 
%0 Journal Article
%A B. S. Choudhury
%A H. Sh. Mondal
%T A note on almost causality and reflectingness of space–time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 366-371
%V 176
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a1/
%G ru
%F TMF_2013_176_3_a1
B. S. Choudhury; H. Sh. Mondal. A note on almost causality and reflectingness of space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 3, pp. 366-371. http://geodesic.mathdoc.fr/item/TMF_2013_176_3_a1/

[1] C. J. S. Clarke, P. S Joshi, Class. Quantum Grav., 5:1 (1988), 19–25 | DOI | MR | Zbl

[2] U. D. Vyas, Gen. Relat. Grav., 40:11 (2008), 2461–2465 | DOI | MR | Zbl

[3] S. W. Hawking, G. F. Rellis, The Large Scale Structure of Space-time, Cambridge Univ. Press, Cambridge, 1973 | MR | Zbl

[4] R. Penrose, Techniques of Differential Topology in Relativity, CBMS-NSF Regional Conference Series in Applied Mathematics, 7, SIAM, Philadelphia, PA, 1972 | MR | Zbl

[5] R. M. Wald, General Relativity, Univ. of Chicago Press, Chicago, IL, 1984 | MR | Zbl

[6] G. M. Akolia, P. S. Joshi, U. D.Vyas, J. Math. Phys., 22:6 (1981), 1243–1247 | DOI | MR

[7] N. M. J. Woodhouse, J. Math. Phys., 14 (1973), 495–501 | DOI | MR | Zbl