@article{TMF_2013_176_2_a5,
author = {I. Danilenko},
title = {Modified {Hamilton} formalism for fields},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {281--305},
year = {2013},
volume = {176},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a5/}
}
I. Danilenko. Modified Hamilton formalism for fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 281-305. http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a5/
[1] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Editorial URSS, M., 2003 | MR
[2] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, v. 2, Geometriya i topologiya mnogoobrazii, Editorial URSS, M., 2001 | MR
[3] V. I. Arnold, A. B. Givental, Simplekticheskaya geometriya, RKhD, Izhevsk, 2000
[4] Dzh. Kharris, Algebraicheskaya geometriya. Nachalnyi kurs, MTsNMO, M., 2006
[5] A. Morozov, Hamiltonian formalism in the presence of higher derivatives, arXiv: 0712.0946
[6] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | MR | Zbl
[7] P. I. Dunin-Barkovskii, A. V. Sleptsov, TMF, 158:1 (2009), 72–97 | DOI | MR
[8] P. A. M. Dirak, Lektsii po kvantovoi mekhanike, RKhD, Izhevsk, 1998
[9] L. Takhtajan, Commun. Math. Phys., 160:2 (1994), 295–315, arXiv: hep-th/9301111 | DOI | MR | Zbl
[10] T. Curtright, C. Zachos, Phys. Rev. D, 68:8 (2003), 085001, 29 pp., arXiv: hep-th/0212267 | DOI