Quantum mechanics and the hydrogen atom in a generalized Wigner–Seitz cell
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 254-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the energy spectrum of a nonrelativistic quantum particle and a hydrogen-like atom placed in a vacuum cavity with general boundary conditions ensuring confinement. When these conditions, as in the Wigner–Seitz model, admit a large amplitude of the wave function on the boundary of the cavity, a nonperturbative rearrangement of lower energy levels of the spectrum occurs, which is essentially different from the case of the confinement by a potential barrier. A nontrivial role in this spectrum rearrangement is played by the von Neumann–Wigner effect of repulsion of nearby levels. For such a confined state of a hydrogen-like atom in a spherical cavity of radius $R$ with the boundary formed by a potential layer of depth $d$, we show that the lowest energy level of the atom has a pronounced minimum at physically meaningful layer parameters and that the binding energy can be much greater than $E_{1s}$, the energy of the 1s level of a free-standing atom, and that the regime where the atom binding is much greater than $E_{1s}$ becomes possible for a cavity with $R\sim10$$100$ nm.
Keywords: confinement of quantum systems, energy spectrum rearrangement, hydrogen atom, Wigner–Seitz model.
@article{TMF_2013_176_2_a4,
     author = {K. A. Sveshnikov},
     title = {Quantum mechanics and the~hydrogen atom in a~generalized {Wigner{\textendash}Seitz} cell},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {254--280},
     year = {2013},
     volume = {176},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a4/}
}
TY  - JOUR
AU  - K. A. Sveshnikov
TI  - Quantum mechanics and the hydrogen atom in a generalized Wigner–Seitz cell
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 254
EP  - 280
VL  - 176
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a4/
LA  - ru
ID  - TMF_2013_176_2_a4
ER  - 
%0 Journal Article
%A K. A. Sveshnikov
%T Quantum mechanics and the hydrogen atom in a generalized Wigner–Seitz cell
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 254-280
%V 176
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a4/
%G ru
%F TMF_2013_176_2_a4
K. A. Sveshnikov. Quantum mechanics and the hydrogen atom in a generalized Wigner–Seitz cell. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 254-280. http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a4/

[1] W. Jaskolski, Phys. Rep., 271:1 (1996), 1–66 | DOI

[2] V. K. Dolmatov, A. S. Baltenkov, J.-P. Connerade, S. T. Manson, Rad. Phys. Chem., 70:1–3 (2004), 417–433 | DOI

[3] J. R. Sabin, E. J. Brandas (eds.), Theory of Confined Quantum Systems. Part I, II, Advances in Quantum Chemistry, 57, 58, Elsevier, Amsterdam, 2009

[4] J.-P. Connerade, V. K. Dolmatov, P. A. Lakshmi, S. T. Manson, J. Phys. B, 32:10 (1999), L239–L245 | DOI

[5] J.-P. Connerade, V. K. Dolmatov, S. T. Manson, J. Phys. B, 32:14 (1999), L395–L403 ; 33:12 (2000), 2279–2285 | DOI | DOI

[6] G. Alefeld, J. Völkl (eds.), Hydrogen in Metals. I, II, Topics in Applied Physics, 28, 29, Springer, Berlin, 1978

[7] Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Springer, Berlin, 1993

[8] H. J. Maris, J. Phys. Soc. Japan, 77:8 (2008), 111008, 12 pp. | DOI

[9] C. A. Walsh, J. Yuan, L. M. Brown, Phil. Mag. A, 80:7 (2000), 1507–1543 | DOI

[10] A. Michels, J. de Boer, A. Bijl, Physica, 4:10 (1937), 981–994 | DOI

[11] A. Sommerfeld, H. Welker, Ann. Phys., 424:1–2 (1938), 56–65 | DOI

[12] N. Aquino, Adv. Quant. Chem., 57 (2009), 123–171 | DOI

[13] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl

[14] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, V. F. Weisskopf, Phys. Rev. D, 9:12 (1974), 3471–3495 | DOI | MR

[15] A. Hosaka, H. Toki, Phys. Rep., 277 (1996), 65–188 ; Quarks, Baryons and Chiral Symmetry, World Sci., Singapore, 2001 | DOI

[16] K. D. Sen, V. I. Pupyshev, H. E. Montgomery Jr., Adv. Quant. Chem., 57 (2009), 25–77 | DOI

[17] V. I. Pupyshev, Zhurn. fiz. khim., 74:1 (2000), 58–62

[18] E. Wigner, F. Seitz, Phys. Rev., 43:10 (1933), 804–810 ; 46:6 (1934), 509–524 | DOI | DOI

[19] J. von Neumann, E. P. Wigner, Phys. Z., 30 (1929), 465–467; 467–470 | Zbl

[20] R. Caputo, A. Alavi, Mol. Phys., 101:11 (2003), 1781–1787 | DOI

[21] M. H. Al-Hashimi, U.-J. Wiese, Ann. Phys., 327:1 (2012), 1–28, arXiv: 1105.0391 | DOI | MR | Zbl

[22] M. H. Al-Hashimi, U.-J. Wiese, Ann. Phys., 327:11 (2012), 2742–2759 | DOI | MR | Zbl

[23] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR | Zbl

[24] K. Sveshnikov, A. Roenko, “Quantum confinement under Neumann condition: atomic H filled in a lattice of cavities”, Physica B, 2013, in press ; arXiv: 1301.3399

[25] Dzh. D. Berken, S. L. Drell, Relyativistskaya kvantovaya teoriya, Nauka, M., 1978 | MR | MR | Zbl

[26] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Kvantovaya elektrodinamika, Nauka, M., 1989 | MR | Zbl