New Faddeev–Niemi-type variables for the static Yang–Mills theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 222-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Faddeev and Niemi introduced a nonlinear sigma model as a natural extension of the Faddeev $SU(2)$ chiral model. The field variables in the extended model are two chiral fields taking values in $SU(3)/(U(1)\times U(1))$ and $SU(3)/(SU(2)\times U(1))$. Shabanov showed that the energy functional of the extended model is bounded from below by a topological invariant and can therefore support knotlike excitations and a mass gap. We introduce new variables of the Faddeev–Niemi type for the static $SU(3)$ Yang–Mills theory, which reveal a structure of a nonlinear sigma model in the Lagrangian.
Keywords: Yang–Mills field, Faddeev–Niemi variables, stringlike soliton, maximal Abelian gauge fixing, Skyrme–Faddeev model.
@article{TMF_2013_176_2_a3,
     author = {M. P. Kisielowski},
     title = {New {Faddeev{\textendash}Niemi-type} variables for the~static {Yang{\textendash}Mills} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--253},
     year = {2013},
     volume = {176},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a3/}
}
TY  - JOUR
AU  - M. P. Kisielowski
TI  - New Faddeev–Niemi-type variables for the static Yang–Mills theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 222
EP  - 253
VL  - 176
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a3/
LA  - ru
ID  - TMF_2013_176_2_a3
ER  - 
%0 Journal Article
%A M. P. Kisielowski
%T New Faddeev–Niemi-type variables for the static Yang–Mills theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 222-253
%V 176
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a3/
%G ru
%F TMF_2013_176_2_a3
M. P. Kisielowski. New Faddeev–Niemi-type variables for the static Yang–Mills theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 222-253. http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a3/

[1] L. D. Faddeev, A. J. Niemi, Nucl. Phys. B, 776:1–2 (2007), 38–65, arXiv: hep-th/0608111 | DOI | MR | Zbl

[2] L. D. Faddeev, Quantisation of Solitons, preprint IAS Print 75-QS70, IAS, Princeton, NJ, 1975 ; “Einstein and several contemporary tendencies in the field theory of elementary particles”, Relativity, Quanta and Cosmology of the Scientific Thought of Albert Einstein, eds. M. Pantaleo, F. De Finis, Johnson Reprint, New York, 1979, 247–266 | MR | MR

[3] A. F. Vakulenko, L. V. Kapitanskii, Dokl. AN SSSR, 246:4 (1979), 840–842 | MR | Zbl

[4] J. Hietarinta, P. Salo, Phys. Lett. B, 451:1–2 (1999), 60–67, arXiv: hep-th/9811053 | DOI | MR | Zbl

[5] R. Battye, P. M. Sutcliffe, Phys. Rev. Lett., 81:22 (1998), 4798–4801 | DOI | MR | Zbl

[6] L. D. Faddeev, A. J. Niemi, Nature, 387:6628 (1997), 58–61, arXiv: hep-th/9610193 | DOI

[7] L. D. Faddeev, “Knots as possible excitations of the quantum Yang–Mills fields”, Quantum Field Theory and Beyond, Essays in Honor of Wolfhart Zimmermann (Ringberg Castle, Tegernsee, Germany, 3–6 February 2008), eds. E. Seiler, K. Sibold, World Sci., Hackensack, NJ, 2008, 156–166, arXiv: 0805.1624 | DOI | MR | Zbl

[8] T. A. Bolokhov, L. D. Faddeev, TMF, 139:2 (2004), 276–290 | DOI | DOI | MR | Zbl

[9] L. D. Faddeev, A. J. Niemi, Phys. Lett. B, 449:3–4 (1999), 214–218, arXiv: hep-th/9812090 | DOI | MR | Zbl

[10] S. V. Shabanov, J. Math. Phys., 43:8 (2002), 4127–4134, arXiv: hep-th/0202146 | DOI | MR | Zbl

[11] L. D. Faddeev, An alternative interpretation of the Weinberg–Salam model, arXiv: 0811.3311

[12] S. V. Shabanov, Phys. Lett. B, 463:2–4 (1999), 263–272, arXiv: hep-th/9907182 | DOI | MR | Zbl

[13] K.-I. Kondo, A. Shibata, T. Shinohara, S. Kato, PoS FacesQCD, 2010, 003, 10 pp., arXiv: 1102.4150

[14] J. Evslin, S. Giacomelli, K. Konishi, A. Michelini, JHEP, 06 (2011), 094, 25 pp., arXiv: 1103.5969 | DOI | MR