Mots-clés : moment map, bifurcation of Liouville tori.
@article{TMF_2013_176_2_a2,
author = {P. E. Ryabov},
title = {Phase topology of one irreducible integrable problem in the~dynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--221},
year = {2013},
volume = {176},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a2/}
}
P. E. Ryabov. Phase topology of one irreducible integrable problem in the dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a2/
[1] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118–125 | DOI | DOI | MR | Zbl
[2] A. G. Reyman, M. A. Semenov-Tian-Shansky, Lett. Math. Phys., 14:1 (1987), 55–61 | DOI | MR | Zbl
[3] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem. Bigamiltonovo opisanie, predstavlenie Laksa, razdelenie peremennykh, IKI, M., Izhevsk, 2003 | MR
[4] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, IKI, M., Izhevsk, 2005 | MR | Zbl
[5] V. V. Sokolov, “A generalized Kowalewski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$”, The Kowalevski Property (Leeds, 2000), CRM Proceedings and Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, RI, 2002, 307–315, arXiv: nlin/0110022 | DOI | MR
[6] P. E. Ryabov, MTT, 37 (2007), 97–111 | MR
[7] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122:2 (1989), 321–354 | DOI | MR
[8] M. P. Kharlamov, MTT, 34 (2004), 47–58 | MR
[9] M. P. Kharlamov, Nelineinaya dinam., 3:3 (2007), 331–348 | MR
[10] M. P. Kharlamov, Hiroshima Math. J., 39:3 (2009), 327–350 | MR | Zbl
[11] O. I. Bogoyavlenskii, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | DOI | MR | Zbl
[12] D. B. Zotev, Regul. Chaotic Dyn., 5:4 (2000), 437–457 | DOI | MR | Zbl
[13] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 147–183 | MR | Zbl
[14] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological Classification of Integrable Systems, v. 6, Advances in Soviet Mathematics, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 1–35 | MR
[15] M. P. Kharlamov, A. Yu. Savushkin, Ukr. matem. vestn., 1:4 (2004), 564–582 | MR | Zbl
[16] M. P. Kharlamov, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl
[17] M. P. Kharlamov, MTT, 36 (2006), 13–22 | MR
[18] M. P. Kharlamov, Regul. Chaotic Dyn., 12:3 (2007), 267–280, arXiv: 0803.1024 | DOI | MR | Zbl
[19] M. P. Kharlamov, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR | Zbl
[20] M. P. Kharlamov, Nelineinaya dinam., 7:1 (2011), 25–51
[21] P. E. Ryabov, M. P. Kharlamov, Matem. sb., 203:2 (2012), 111–142 | DOI | DOI | MR | Zbl
[22] A. T. Fomenko, Izv. AN SSSR. Ser. matem., 55:4 (1991), 747–779 | DOI | MR | Zbl
[23] M. P. Kharlamov, P. E. Ryabov, Dokl. RAN, 447:5 (2012), 499–502 | Zbl
[24] M. P. Kharlamov, MTT, 32 (2002), 32–38 | MR | Zbl
[25] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, RKhD, Izhevsk, 1999 | MR | Zbl