Phase topology of one irreducible integrable problem in the dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 205-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the integrable system with three degrees of freedom for which V. V. Sokolov and A. V. Tsiganov specified the Lax pair. The Lax representation generalizes the $L$$A$ pair found by A. G. Reyman and M. A. Semenov-Tian-Shansky for the Kovalevskaya gyrostat in a double field. We give explicit formulas for the additional first integrals $K$ and $G$ (independent almost everywhere), which are functionally related to the coefficients of the spectral curve for the Sokolov–Tsiganov $L$$A$ pair. Using this form of the additional integrals $K$ and $G$ and the Kharlamov parametric reduction, we analytically present two invariant four-dimensional submanifolds where the induced dynamical system is Hamiltonian (almost everywhere) with two degrees of freedom. The system of equations specifying one of the invariant submanifolds is a generalization of the invariant relations for the integrable Bogoyavlensky case (rotation of a magnetized rigid body in homogeneous gravitational and magnetic fields). We use the method of critical subsystems to describe the phase topology of the whole system. For each subsystem, we construct the bifurcation diagrams and specify the bifurcations of the Liouville tori both inside the subsystems and in the whole system.
Keywords: completely integrable Hamiltonian system, spectral curve, bifurcation diagram
Mots-clés : moment map, bifurcation of Liouville tori.
@article{TMF_2013_176_2_a2,
     author = {P. E. Ryabov},
     title = {Phase topology of one irreducible integrable problem in the~dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--221},
     year = {2013},
     volume = {176},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a2/}
}
TY  - JOUR
AU  - P. E. Ryabov
TI  - Phase topology of one irreducible integrable problem in the dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 205
EP  - 221
VL  - 176
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a2/
LA  - ru
ID  - TMF_2013_176_2_a2
ER  - 
%0 Journal Article
%A P. E. Ryabov
%T Phase topology of one irreducible integrable problem in the dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 205-221
%V 176
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a2/
%G ru
%F TMF_2013_176_2_a2
P. E. Ryabov. Phase topology of one irreducible integrable problem in the dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a2/

[1] V. V. Sokolov, A. V. Tsyganov, TMF, 131:1 (2002), 118–125 | DOI | DOI | MR | Zbl

[2] A. G. Reyman, M. A. Semenov-Tian-Shansky, Lett. Math. Phys., 14:1 (1987), 55–61 | DOI | MR | Zbl

[3] A. V. Borisov, I. S. Mamaev, Sovremennye metody teorii integriruemykh sistem. Bigamiltonovo opisanie, predstavlenie Laksa, razdelenie peremennykh, IKI, M., Izhevsk, 2003 | MR

[4] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela. Gamiltonovy metody, integriruemost, khaos, IKI, M., Izhevsk, 2005 | MR | Zbl

[5] V. V. Sokolov, “A generalized Kowalewski Hamiltonian and new integrable cases on $e(3)$ and $so(4)$”, The Kowalevski Property (Leeds, 2000), CRM Proceedings and Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, RI, 2002, 307–315, arXiv: nlin/0110022 | DOI | MR

[6] P. E. Ryabov, MTT, 37 (2007), 97–111 | MR

[7] A. I. Bobenko, A. G. Reyman, M. A. Semenov-Tian-Shansky, Commun. Math. Phys., 122:2 (1989), 321–354 | DOI | MR

[8] M. P. Kharlamov, MTT, 34 (2004), 47–58 | MR

[9] M. P. Kharlamov, Nelineinaya dinam., 3:3 (2007), 331–348 | MR

[10] M. P. Kharlamov, Hiroshima Math. J., 39:3 (2009), 327–350 | MR | Zbl

[11] O. I. Bogoyavlenskii, Izv. AN SSSR. Ser. matem., 48:5 (1984), 883–938 | DOI | MR | Zbl

[12] D. B. Zotev, Regul. Chaotic Dyn., 5:4 (2000), 437–457 | DOI | MR | Zbl

[13] A. V. Bolsinov, “Methods of calculation of the Fomenko–Zieschang invariant”, Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 147–183 | MR | Zbl

[14] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological Classification of Integrable Systems, v. 6, Advances in Soviet Mathematics, ed. A. T. Fomenko, AMS, Providence, RI, 1991, 1–35 | MR

[15] M. P. Kharlamov, A. Yu. Savushkin, Ukr. matem. vestn., 1:4 (2004), 564–582 | MR | Zbl

[16] M. P. Kharlamov, Regul. Chaotic Dyn., 10:4 (2005), 381–398 | DOI | MR | Zbl

[17] M. P. Kharlamov, MTT, 36 (2006), 13–22 | MR

[18] M. P. Kharlamov, Regul. Chaotic Dyn., 12:3 (2007), 267–280, arXiv: 0803.1024 | DOI | MR | Zbl

[19] M. P. Kharlamov, Regul. Chaotic Dyn., 14:6 (2009), 621–634 | DOI | MR | Zbl

[20] M. P. Kharlamov, Nelineinaya dinam., 7:1 (2011), 25–51

[21] P. E. Ryabov, M. P. Kharlamov, Matem. sb., 203:2 (2012), 111–142 | DOI | DOI | MR | Zbl

[22] A. T. Fomenko, Izv. AN SSSR. Ser. matem., 55:4 (1991), 747–779 | DOI | MR | Zbl

[23] M. P. Kharlamov, P. E. Ryabov, Dokl. RAN, 447:5 (2012), 499–502 | Zbl

[24] M. P. Kharlamov, MTT, 32 (2002), 32–38 | MR | Zbl

[25] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, RKhD, Izhevsk, 1999 | MR | Zbl