Explicit solution family for the equation of the resistively shunted Josephson junction model
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 163-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain and study a family of solutions of the equation $\dot\phi+\sin\phi =B+A\cos\omega t$, which is applicable to several problems in physics, mechanics, and geometry. We use polynomial solutions of double confluent Heun equations associated with this equation to construct the family. We describe the manifold $M_{\mathrm P}$ of parameters $(A,B,\omega)$ of these solutions and obtain explicit formulas for the rotation number and Poincaré map of the dynamical system on a torus corresponding to this equation with parameters $(A,B,\omega)\in M_{\mathrm rP}$.
Keywords: dynamical system on a torus, rotation number
Mots-clés : double confluent Heun equations, polynomial solution, Poincaré map.
@article{TMF_2013_176_2_a0,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {Explicit solution family for the~equation of the~resistively shunted {Josephson} junction model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--188},
     year = {2013},
     volume = {176},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - Explicit solution family for the equation of the resistively shunted Josephson junction model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 163
EP  - 188
VL  - 176
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a0/
LA  - ru
ID  - TMF_2013_176_2_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T Explicit solution family for the equation of the resistively shunted Josephson junction model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 163-188
%V 176
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a0/
%G ru
%F TMF_2013_176_2_a0
V. M. Buchstaber; S. I. Tertychnyi. Explicit solution family for the equation of the resistively shunted Josephson junction model. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 2, pp. 163-188. http://geodesic.mathdoc.fr/item/TMF_2013_176_2_a0/

[1] V. M. Bukhshtaber, O. I. Karpov, S. I. Tertychnyi, UMN, 67:1(403) (2012), 181–182 | DOI | DOI | MR

[2] W. C. Stewart, Appl. Phys. Lett., 12 (1968), 277–280 | DOI

[3] D. E. McCumber, J. Appl. Phys., 39 (1968), 3113–3118 | DOI

[4] V. V. Shmidt, Vvedenie v fiziku sverkhprovodnikov, MTsNMO, M., 2000

[5] B. D. Josephson, Phys. Lett., 1:7 (1962), 251–253 | DOI | Zbl

[6] A. Barone, Dzh. Paterno, Effekt Dzhozefsona. Fizika i primenenie, Mir, M., 1984

[7] R. Foote, Rep. Math. Phys., 42:1–2 (1998), 249–271, arXiv: math/9808070 | DOI | MR | Zbl

[8] R. L. Foote, M. Levi, S. Tabachnikov, Tractrices, bicycle tire tracks, Hatchet planimeters, and a 100–year–old conjecture, arXiv: 1207.0834 | MR

[9] J. Guckenheimer, Yu. S. Ilyashenko, Mosc. Math. J., 1:1 (2001), 27–47 | MR | Zbl

[10] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[11] V. I. Arnold, Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii, RKhD, Izhevsk; MTsNMO, M., 2002

[12] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, TMF, 162:2 (2010), 254–265 | DOI | DOI | MR

[13] Yu. S. Ilyashenko, D. A. Ryzhov, D. A. Filimonov, Funkts. analiz i ego pril., 45:3 (2011), 41–54 | DOI | DOI | MR | Zbl

[14] D. A. Ryzhov, Rezonansnyi zakhvat i spetsialnye ergodicheskie teoremy, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2012

[15] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, UMN, 59:2(356) (2004), 187–188 | DOI | DOI | MR | Zbl

[16] S. I. Tertychniy, Long–term behavior of solutions of the equation $\dot\phi+\sin\phi=f$ with periodic $f$ and the modeling of dynamics of overdamped Josephson junctions: Unlectured notes, arXiv: math-ph/0512058

[17] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Heun's differential equations. Part C, ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[18] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl

[19] S. I. Tertychniy, The modelling of a Josephson junction and Heun polynomials, arXiv: math-ph/0601064

[20] S. I. Tertychniy, Electron. J. Diff. Equ., 2007:133 (2007), 1–20 | MR

[21] V. P. Ilin, Yu. I. Kuznetsov, Trekhdiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985 | MR

[22] Dzh. Kh. Uilkinson, Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[23] S. I. Tertychnyi, UMN, 55:1(331) (2000), 195–196 | DOI | DOI | MR | Zbl

[24] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR

[25] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl