Critical behavior of percolation process influenced by a~random velocity field: One--loop approximation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 79-88
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Using the perturbation renormalization group, we investigate the influence of a random velocity field on the critical behavior of the directed-bond percolation process near its second-order phase transition between the absorbing and active phases. We use the Antonov–Kraichnan model with a finite correlation time to describe the advecting velocity field. To obtain information about the large-scale asymptotic behavior of the model, we use the field theory renormalization group approach. We analyze the model near its critical dimension via a three-parameter expansion in $\epsilon$, $\delta$, and $\eta$, where $\epsilon$ is the deviation from the Kolmogorov scaling, $\delta$ is the deviation from the critical space dimension, and $\eta$ is the deviation from the parabolic dispersion law for the velocity correlator. We find the fixed points with the corresponding stability regions in the leading order in the perturbation scheme.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
perturbative renormalization group, directed percolation
Mots-clés : turbulent diffusion.
                    
                  
                
                
                Mots-clés : turbulent diffusion.
@article{TMF_2013_176_1_a7,
     author = {M. Dan\v{c}o and M. Gnatich and T. Lu\v{c}ivjansk\'y and L. Mi\v{z}i\v{s}in},
     title = {Critical behavior of percolation process influenced by a~random velocity field: {One--loop} approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/}
}
                      
                      
                    TY - JOUR AU - M. Dančo AU - M. Gnatich AU - T. Lučivjanský AU - L. Mižišin TI - Critical behavior of percolation process influenced by a~random velocity field: One--loop approximation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2013 SP - 79 EP - 88 VL - 176 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/ LA - ru ID - TMF_2013_176_1_a7 ER -
%0 Journal Article %A M. Dančo %A M. Gnatich %A T. Lučivjanský %A L. Mižišin %T Critical behavior of percolation process influenced by a~random velocity field: One--loop approximation %J Teoretičeskaâ i matematičeskaâ fizika %D 2013 %P 79-88 %V 176 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/ %G ru %F TMF_2013_176_1_a7
M. Dančo; M. Gnatich; T. Lučivjanský; L. Mižišin. Critical behavior of percolation process influenced by a~random velocity field: One--loop approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 79-88. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/