Critical behavior of percolation process influenced by a random velocity field: One–loop approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 79-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the perturbation renormalization group, we investigate the influence of a random velocity field on the critical behavior of the directed-bond percolation process near its second-order phase transition between the absorbing and active phases. We use the Antonov–Kraichnan model with a finite correlation time to describe the advecting velocity field. To obtain information about the large-scale asymptotic behavior of the model, we use the field theory renormalization group approach. We analyze the model near its critical dimension via a three-parameter expansion in $\epsilon$, $\delta$, and $\eta$, where $\epsilon$ is the deviation from the Kolmogorov scaling, $\delta$ is the deviation from the critical space dimension, and $\eta$ is the deviation from the parabolic dispersion law for the velocity correlator. We find the fixed points with the corresponding stability regions in the leading order in the perturbation scheme.
Keywords: perturbative renormalization group, directed percolation
Mots-clés : turbulent diffusion.
@article{TMF_2013_176_1_a7,
     author = {M. Dan\v{c}o and M. Gnatich and T. Lu\v{c}ivjansk\'y and L. Mi\v{z}i\v{s}in},
     title = {Critical behavior of percolation process influenced by a~random velocity field: {One{\textendash}loop} approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--88},
     year = {2013},
     volume = {176},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/}
}
TY  - JOUR
AU  - M. Dančo
AU  - M. Gnatich
AU  - T. Lučivjanský
AU  - L. Mižišin
TI  - Critical behavior of percolation process influenced by a random velocity field: One–loop approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 79
EP  - 88
VL  - 176
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/
LA  - ru
ID  - TMF_2013_176_1_a7
ER  - 
%0 Journal Article
%A M. Dančo
%A M. Gnatich
%A T. Lučivjanský
%A L. Mižišin
%T Critical behavior of percolation process influenced by a random velocity field: One–loop approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 79-88
%V 176
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/
%G ru
%F TMF_2013_176_1_a7
M. Dančo; M. Gnatich; T. Lučivjanský; L. Mižišin. Critical behavior of percolation process influenced by a random velocity field: One–loop approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 79-88. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a7/

[1] H.-K. Janssen, U. C. Täuber, Ann. Phys., 315:1 (2004), 147–192, arXiv: cond-mat/0409670 | DOI

[2] U. C. Täuber, Adv. Solid State Phys., 43 (2003), 659–575 | DOI

[3] J. L. Cardy, R. L. Sugar, J. Phys. A, 13:12 (1980), L423–L427 | DOI | MR

[4] H. Hinrichsen, Adv. Phys., 49:7 (2000), 815–958, arXiv: cond-mat/0001070 | DOI

[5] S. R. Broadbent, I. M. Hamersley, Proc. Cambr. Phil. Soc., 53:3 (1957), 629–641 | DOI | MR | Zbl

[6] H. K. Janssen, Z. Phys. B, 58:4 (1985), 311–317 | DOI | MR

[7] E. Frey, U. C. Täuber, F. Schwabl, Phys. Rev. E, 49:6 (1994), 5058–5072 | DOI

[8] H.-K. Janssen, K. Oerding, F. van Wijland, H. J. Hilhorst, Eur. Phys. J. B, 7:1 (1999), 137–145 ; H. Hinrichsen, J. Stat. Mech., 07 (2007), P07006, 35 pp., arXiv: ; H.-K. Janssen, O. Stenull, Phys. Rev. E, 78:6 (2008), 061117, 12 pp., arXiv: cond-mat/07021690809.2344) | DOI | DOI | MR | DOI | MR

[9] J. L. Cardy, P. Grassberger, J. Phys. A, 18:6 (1985), L267–L271 ; J. L. Cardy, J. Phys. A, 16:18 (1983), L709–L712 ; F. Linder, J. Tran-Gia, S. R. Dahmen, H. Hinrichsen, J. Phys. A, 41:18 (2008), 185005, 11 pp. | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[10] H.-K. Janssen, B. Schaub, B. Schittmann, Z. Phys. B, 72:1 (1988), 111–114 | DOI

[11] N. V. Antonov, V. I. Iglovikov, A. S. Kapustin, J. Phys. A, 42:13 (2008), 135001, 19 pp., arXiv: 0808.0076 | DOI | MR

[12] N. V. Antonov, A. S. Kapustin, J. Phys. A, 43:40 (2010), 405001, 22 pp. | DOI | MR | Zbl

[13] N. V. Antonov, A. S. Kapustin, A. V. Malyshev, TMF, 169:1 (2011), 124–136 | DOI | DOI | Zbl

[14] N. V. Antonov, Phys. Rev. E, 60:6 (1999), 6691–6707 ; Physica D, 144:3–4 (2000), 370–386 | DOI | MR | Zbl | DOI | MR | Zbl

[15] M. Doi, J. Phys. A, 9:9 (1976), 1456–1477 ; 1479–1495 | DOI | DOI

[16] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, FAZIS, M., 1998 | MR | Zbl

[17] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[18] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 77, Oxford Univ. Press, Oxford, 1989 | MR