Effect of compressibility on the annihilation process
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 50-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the renormalization group in the perturbation theory, we study the influence of a random velocity field on the kinetics of the single-species annihilation reaction at and below its critical dimension $d_\mathrm{c}=2$. The advecting velocity field is modeled by a Gaussian variable self-similar in space with a finite-radius time correlation (the Antonov–Kraichnan model). We take the effect of the compressibility of the velocity field into account and analyze the model near its critical dimension using a three-parameter expansion in $\epsilon$, $\Delta$, and $\eta$, where $\epsilon$ is the deviation from the Kolmogorov scaling, $\Delta$ is the deviation from the (critical) space dimension two, and $\eta$ is the deviation from the parabolic dispersion law. Depending on the values of these exponents and the compressiblity parameter $\alpha$, the studied model can exhibit various asymptotic (long-time) regimes corresponding to infrared fixed points of the renormalization group. We summarize the possible regimes and calculate the decay rates for the mean particle number in the leading order of the perturbation theory.
Keywords: annihilation process, perturbative renormalization approximation.
Mots-clés : Antonov–Kraichnan model
@article{TMF_2013_176_1_a4,
     author = {M. Hnatich and J. Honkonen and T. Lu\v{c}ivjansk\'y},
     title = {Effect of compressibility on the~annihilation process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--59},
     year = {2013},
     volume = {176},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a4/}
}
TY  - JOUR
AU  - M. Hnatich
AU  - J. Honkonen
AU  - T. Lučivjanský
TI  - Effect of compressibility on the annihilation process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 50
EP  - 59
VL  - 176
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a4/
LA  - ru
ID  - TMF_2013_176_1_a4
ER  - 
%0 Journal Article
%A M. Hnatich
%A J. Honkonen
%A T. Lučivjanský
%T Effect of compressibility on the annihilation process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 50-59
%V 176
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a4/
%G ru
%F TMF_2013_176_1_a4
M. Hnatich; J. Honkonen; T. Lučivjanský. Effect of compressibility on the annihilation process. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 50-59. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a4/

[1] B. Derrida, V. Hakim, V. Pasquier, Phys. Rev. Lett., 75:4 (1995), 751–754, arXiv: hep-th/9505066 | DOI

[2] R. Kroon, H. Fleurent, R. Sprik, Phys. Rev. E, 47:4 (1993), 2462–2472 | DOI

[3] T. Tél, A. de Moura, C. Grebogi, G. Károlyi, Phys. Rep., 413:2–3 (2005), 91–196 | DOI | MR

[4] B. P. Lee, J. Phys. A, 27:8 (1994), 2633–2652 | DOI

[5] M. W. Deem, J.-M. Park, Phys. Rev. E, 57:3 (1998), 2681–2685, arXiv: cond-mat/9707254 | DOI

[6] M. Hnatich, J. Honkonen, Phys. Rev. E, 61 (2000), 4 | DOI

[7] M. J. E. Richardson, J. Cardy, J. Phys.A, 32:22 (1999), 4035–4045 | DOI | MR | Zbl

[8] A. Celani, A. Lanotte, A. Mazzino, Phys. Rev. E, 60:2 (1999), R1138–R1141 | DOI

[9] R. Benzi, M. H. Jensen, D. R. Nelson, P. Perlekar, S. Pigolotti, F. Toschi, Population dynamics in compressible flows, arXiv: 1203.6319

[10] R. H. Kraichnan, Phys. Fluids, 11:5 (1968), 945–953 | DOI | MR | Zbl

[11] N. V. Antonov, Physica D, 144:3–4 (2000), 370–386 | DOI | MR | Zbl

[12] U. C. Täuber, M. Howard, B. P. Vollmayr-Lee, J. Phys. A, 38:17 (2005), R79–R131 | DOI | MR | Zbl

[13] M. Doi, J. Phys. A, 9:9 (1976), 1465–1478 | DOI

[14] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 6, Gidrodinamika, Nauka, M., 2006 | MR | Zbl

[15] N. V. Antonov, J. Honkonen, Phys. Rev. E, 63:3 (2001), 036302, 7 pp., arXiv: nlin/0010029 | DOI

[16] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, FAZIS, M., 1998 | MR | Zbl

[17] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, Phys. Rev. E, 66:3 (2002), 036313, arXiv: nlin/0204044 | DOI | MR

[18] M. Gnatich, Yu. Khonkonen, T. Luchivyanski, TMF, 169:1 (2011), 137–145 | DOI | DOI

[19] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 77, Oxford Univ. Press, Oxford, 1989 | MR

[20] N. V. Antonov, Phys. Rev. E, 60:6 (1999), 6691–6707 | DOI | MR | Zbl

[21] A. N. Vasil'ev, Functional Methods in Quum Field Theory and Statistical Physics, Gordon and Breach, Amsterdam, 1998 | MR

[22] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London, 1999 | MR | Zbl

[23] M. Hnatič, J. Honkonen, T. Lučivjanský, submitted to Eur. Phys. J. B

[24] J. -P. Bouchaud, A. Georges, Phys. Rep., 195:4–5 (1990), 127–293 | DOI | MR