Anomalous scaling in statistical models of passively advected vector fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 22-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the methods of the renormalization group and the operator product expansion to consider the problem of the stochastic advection of a passive vector field with the most general form of the nonlinear term allowed by the Galilean symmetry. The external velocity field satisfies the Navier–Stokes equation. We show that the correlation functions have anomalous scaling in the inertial range. The corresponding anomalous exponents are determined by the critical dimensions of tensor composite fields (operators) built from only the fields themselves. We calculate the anomalous dimensions in the leading order of the expansion in the exponent in the correlator of the external force in the Navier–Stokes equation (the one-loop approximation of the renormalization group). The anomalous exponents exhibit a hierarchy related to the anisotropy degree: the lower the rank of the tensor operator is, the lower its dimension. The leading asymptotic terms are determined by the scalar operators in both the isotropic and the anisotropic cases, which completely agrees with Kolmogorov's hypothesis of local isotropy restoration.
Keywords: passive vector field, anomalous scaling, renormalization group, operator product expansion.
Mots-clés : turbulent advection
@article{TMF_2013_176_1_a2,
     author = {N. V. Antonov and N. M. Gulitskii},
     title = {Anomalous scaling in statistical models of passively advected vector fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {22--34},
     year = {2013},
     volume = {176},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a2/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - N. M. Gulitskii
TI  - Anomalous scaling in statistical models of passively advected vector fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 22
EP  - 34
VL  - 176
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a2/
LA  - ru
ID  - TMF_2013_176_1_a2
ER  - 
%0 Journal Article
%A N. V. Antonov
%A N. M. Gulitskii
%T Anomalous scaling in statistical models of passively advected vector fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 22-34
%V 176
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a2/
%G ru
%F TMF_2013_176_1_a2
N. V. Antonov; N. M. Gulitskii. Anomalous scaling in statistical models of passively advected vector fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 22-34. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a2/

[1] G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Modern Phys., 73:4 (2001), 913–975, arXiv: cond-mat/0105199 | DOI | MR | Zbl

[2] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, FAZIS, M., 1998 | MR | Zbl

[3] K. Gawȩdzki, A. Kupiainen, Phys. Rev. Lett., 75:21 (1995), 3834–3837 ; D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E, 54:3 (1996), 2564–2572 ; M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E, 52:5 (1995), 4924–4941 ; M. Chertkov, G. Falkovich, Phys. Rev. Lett., 76:15 (1996), 2706–2809 | DOI | DOI | MR | DOI | MR | DOI

[4] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, Phys. Rev. E, 58:2 (1998), 1823–1835 | DOI | MR

[5] N. V. Antonov, J. Phys. A, 39:25 (2006), 7825–7865 | DOI | MR | Zbl

[6] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, Phys. Rev. E, 64:5 (2001), 056306, 28 pp., arXiv: nlin/0106023 | DOI

[7] M. Vergassola, Phys. Rev. E, 53:4 (1996), R3021–R3024 ; I. Rogachevskii, N. Kleeorin, Phys. Rev. E, 56:1 (1997), 417–426 ; I. Arad, L. Biferale, I. Procaccia, Phys. Rev. E, 61:3 (2000), 2654–2662 | DOI | DOI | DOI

[8] A. Lanotte, A. Mazzino, Phys. Rev. E, 60:4 (1999), R3483–R3486 | DOI

[9] N. V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E, 61:6 (2000), 6586–6605 ; M. Hnatich, M. Jurčišin, A. Mazzino, S. Šprinc, Acta Phys. Slovaca, 52:6 (2002), 559–564; M. Hnatich, J. Honkonen, M. Jurčišin, A. Mazzino, S. Šprinc, Phys. Rev. E, 71:6 (2005), 066312, 15 pp. | DOI | DOI

[10] A. P. Kazantsev, ZhETF, 53:5 (1968), 1806–1813

[11] D. Vincenzi, J. Statist. Phys., 106:5–6 (2002), 1073–1091 ; H. Arponen, P. Horvai, J. Statist. Phys., 129:2 (2007), 205–239, arXiv: ; H. Arponen, Phys. Rev. E, 81:3 (2010), 036325, 8 pp. nlin/0610023 | DOI | MR | Zbl | DOI | MR | Zbl | DOI

[12] L. Ts. Adzhemyan, N. V. Antonov, A. V. Runov, Phys. Rev. E, 64:4 (2001), 046310, 30 pp., arXiv: ; Л. Ц. Аджемян, Н. В. Антонов, П. Б. Гольдин, М. В. Компаниец, Вестн. С.-Петерб. ун-та. Сер. 4. Физика. Химия. Вып. 1, 2009, 55–66 nlin/0104012 | DOI

[13] L. Ts. Adzhemyan, N. V. Antonov, P. B. Gol'din, M. V. Kompaniets, J. Phys. A, 46:13 (2013), 135002, 16 pp., arXiv: 1212.3941 | DOI | MR | Zbl

[14] E. Jurčišinova, M. Jurčišin, R. Remecký, M. Scholtz, Phys. Particles Nuclei Lett., 5:3 (2008), 219–222 | DOI

[15] L. Ts. Adzhemyan, N. V. Antonov, A. Mazzino, P. Muratore-Ginanneschi, A. V. Runov, Europhys. Lett., 55:6 (2001), 801–806 | DOI

[16] N. V. Antonov, M. Hnatich, J. Honkonen, M. Jurčišin, Phys. Rev. E, 68:4 (2003), 046306, 25 pp., arXiv: nlin/0305024 | DOI

[17] H. Arponen, Phys. Rev. E, 79:5 (2009), 056303, 14 pp., arXiv: 0811.0510 | DOI | MR

[18] Yu. V. Novozhilov, Yu. A. Yappa, Elektrodinamika, Nauka, M., 1978; Я. Б. Зельдович, А. А. Рузмайкин, Д. Д. Соколов, Магнитные поля в астрофизике, РХД, Ижевск, 2006

[19] N. V. Antonov, N. M. Gulitskiy, “Two-loop calculation of the anomalous exponents in the Kazantsev-Kraichnan model of magnetic hydrodynamics”, Mathematical Modeling and Computational Science (Stara Lesna, Slovakia, July 4–8, 2011), Lecture Notes in Computer Science, 7125, eds. G. Adam, J. Busa, M. Hnatic, Springer, Berlin, 2012, 128–135 ; N. V. Antonov, N. M. Gulitskiy, Phys. Rev. E, 85:6 (2012), 065301, 4 pp., arXiv: ; Erratum 87:3 (2013), 039902, 1 pp. ; E. Jurčišinova, M. Jurčišin, J. Phys. A, 45:48 (2012), 485501 1202.5992 | DOI | MR | DOI | DOI | DOI | MR | Zbl

[20] E. Jurčišinova, M. Jurčišin, R. Remecký, J. Phys. A, 42:27 (2009), 275501, 21 pp. | DOI | MR | Zbl

[21] C. De Dominicis, P. C. Martin, Phys. Rev. A, 19:1 (1979), 419–422 ; P. L. Sulem, J. D. Fournier, A. Pouquet, “Fully developed turbulence and renormalization group”, Dynamical Critical Phenomena and Related Topics (University of Geneva, Switzerland, April 2–6, 1979), Lecture Notes in Physics, 104, ed. C. P. Enz, 1979, 320–335 ; J.-D. Fournier, U. Frisch, Phys. Rev. A, 28:2 (1983), 1000–1002 ; Л. Ц. Аджемян, А. Н. Васильев, Ю. М. Письмак, ТМФ, 57:2 (1983), 268–281 | DOI | DOI | DOI | DOI | MR | Zbl

[22] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[23] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, Metod renormalizatsionnoi gruppy v teorii razvitoi turbulentnosti, Izd-vo SPbU, SPb., 1998 | MR | Zbl

[24] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim, Phys. Rev. E, 71:1 (2005), 016303, 20 pp., arXiv: nlin/0408057 | DOI | MR

[25] J. D. Fournier, P. L. Sulem, A. Pouquet, J. Phys. A, 15:4 (1982), 1393–1420 ; Л. Ц. Аджемян, А. Н. Васильев, М. Гнатич, ТМФ, 64:2 (1985), 196–207 | DOI | Zbl | DOI | Zbl

[26] N. V. Antonov, Phys. Rev. E, 60:6 (1999), 6691–6707 | DOI | MR | Zbl

[27] V. Borue, S. A. Orszag, J. Fluid Mech., 306 (1994), 293–323 ; I. Arad, B. Dhruva, S. Kurien, V. S. L'vov, I. Procaccia, K. R. Sreenivasan, Phys. Rev. Lett., 81:24 (1998), 5330–5333 | DOI | MR | DOI