Phase transitions in two dimensions and multiloop renormalization group expansions
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 140-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss using the field theory renormalization group (RG) to study the critical behavior of two-dimensional (2D) models. We write the RG functions of the 2D $\lambda\phi^4$ Euclidean $n$-vector theory up to five-loop terms, give numerical estimates obtained from these series by Padé–Borel–Leroy resummation, and compare them with their exact counterparts known for $n=1,0,-1$. From the RG series, we then derive pseudo-$\epsilon$-expansions for the Wilson fixed point location $g^*$, critical exponents, and the universal ratio $R_6=g_6/g^2$, where $g_6$ is the effective sextic coupling constant. We show that the obtained expansions are “friendler” than the original RG series: the higher-order coefficients of the pseudo-$\epsilon$-expansions for $g^*$, $R_6$, and $\gamma^{-1}$ turn out to be considerably smaller than their RG analogues. This allows resumming the pseudo-$\epsilon$-expansions using simple Padé approximants without the Borel–Leroy transformation. Moreover, we find that the numerical estimates obtained using the pseudo-$\epsilon$-expansions for $g^*$ and $\gamma^{-1}$ are closer to the known exact values than those obtained from the five-loop RG series using the Padé–Borel–Leroy resummation.
Keywords: renormalization group, two-dimensional Ising model, $n$-vector model, five-loop expansion, critical exponent
Mots-clés : pseudo-$\epsilon$-expansion.
@article{TMF_2013_176_1_a13,
     author = {A. I. Sokolov},
     title = {Phase transitions in two dimensions and multiloop renormalization group expansions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {140--149},
     year = {2013},
     volume = {176},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/}
}
TY  - JOUR
AU  - A. I. Sokolov
TI  - Phase transitions in two dimensions and multiloop renormalization group expansions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 140
EP  - 149
VL  - 176
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/
LA  - ru
ID  - TMF_2013_176_1_a13
ER  - 
%0 Journal Article
%A A. I. Sokolov
%T Phase transitions in two dimensions and multiloop renormalization group expansions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 140-149
%V 176
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/
%G ru
%F TMF_2013_176_1_a13
A. I. Sokolov. Phase transitions in two dimensions and multiloop renormalization group expansions. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/

[1] G. A. Baker, B. G. Nickel, D. I. Meiron, Phys. Rev. B, 17:3 (1978), 1365–1374 | DOI

[2] J. C. Le Guillou, J. Zinn-Justin, Phys. Rev. B, 21:9 (1980), 3976–3998 | DOI | MR | Zbl

[3] S. A. Antonenko, A. I. Sokolov, Phys. Rev. E, 51:3 (1995), 1894–1898, arXiv: hep-th/9803264 | DOI | MR

[4] R. Guida, J. Zinn-Justin, J. Phys. A, 31:40 (1998), 8103–8121, arXiv: cond-mat/9803240 | DOI | MR | Zbl

[5] A. I. Sokolov, E. V. Orlov, V. A. Ul'kov, S. S. Kashtanov, Phys. Rev. E, 60:2 (1999), 1344–1349, arXiv: hep-th/9810082 | DOI

[6] D. V. Pakhnin, A. I. Sokolov, Phys. Rev. B, 61:22 (2000), 15130–15135, arXiv: cond-mat/9912071 | DOI

[7] J. M. Carmona, A. Pelissetto, E. Vicari, Phys. Rev. B, 61:22 (2000), 15136–15151, arXiv: cond-mat/9912115 | DOI

[8] E. V. Orlov, A. I. Sokolov, FTT, 42:11 (2000), 2087–2093, arXiv: hep-th/0003140 | DOI

[9] P. Calabrese, E. V. Orlov, D. V. Pakhnin, A. I. Sokolov, Phys. Rev. B, 70:9 (2004), 094425, 15 pp., arXiv: cond-mat/0405432 | DOI

[10] G. A. Baker. Jr., Phys. Rev. B, 15:3 (1977), 1552–1559 | DOI

[11] P. Butera, M. Comi, Phys. Rev. B, 54:22 (1996), 15828–15848, arXiv: hep-lat/9710092 | DOI

[12] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, Nucl. Phys. B, 459:3 (1996), 207–242, arXiv: hep-lat/9506002 | DOI | MR

[13] A. Pelissetto, E. Vicari, Nucl. Phys. B, 519:3 (1998), 626–660, arXiv: cond-mat/9711078 | DOI | MR | Zbl

[14] J.-K. Kim, A. Patrascioiu, Phys. Rev. D, 47:6 (1993), 2588–2590 | DOI

[15] G. Jug, B. N. Shalaev, J. Phys. A, 32:42 (1999), 7249–7261, arXiv: cond-mat/9908068 | DOI | MR | Zbl

[16] J. Kim, Phys. Lett. B, 345:4 (1995), 469–472, arXiv: hep-lat/9502005 | DOI

[17] B. Nienhuis, J. Phys. A, 15:1 (1982), 199–213 | DOI | MR

[18] M. Barma, M. E. Fisher, Phys. Rev. Lett., 53:20 (1984), 1935–1938 | DOI

[19] E. Barouch, B. M. McCoy, T. T. Wu, Phys. Rev. Lett., 31:23 (1973), 1409–1411 | DOI

[20] M. Henkel, Conformal Invariance and Critical Phenomena, Springer, Berlin, 1999 | MR | Zbl

[21] A. I. Sokolov, E. V. Orlov, Phys. Rev. B, 58:5 (1998), 2395–2398, arXiv: cond-mat/9804008 | DOI

[22] A. I. Sokolov, E. V. Orlov, V. A. Ul'kov, Phys. Lett. A, 227:3–4 (1997), 255–258, arXiv: cond-mat/9803357 | DOI

[23] M. Caselle, M. Hasenbusch, A. Pelissetto, E. Vicari, J. Phys. A, 33:46 (2000), 8171–8180, arXiv: ; 34:14 (2001), 2923–2948, arXiv: hep-th/0003049cond-mat/0011305 | DOI | MR | Zbl | DOI | MR | Zbl

[24] A. I. Sokolov, FTT, 40:7 (1998), 1284–1290 | DOI

[25] S.-Y. Zinn, S.-N. Lai, M. E. Fisher, Phys. Rev. E, 54:2 (1996), 1176–1182 | DOI

[26] A. Pelissetto, E. Vicari, Nucl. Phys. B, 522:3 (1998), 605–624, arXiv: cond-mat/9801098 | DOI | MR

[27] É. Le Roy, Ann. Fac. Sci. Univ. Toulouse (2), 2 (1900), 317–430 | DOI | MR | MR | Zbl

[28] A. I. Sokolov, FTT, 47:11 (2005), 2056–2059, arXiv: cond-mat/0510088 | DOI

[29] P. Fonseca, A. Zamolodchikov, J. Statist. Phys., 110:3–6 (2003), 527–590, arXiv: hep-th/0112167 | DOI | MR | Zbl

[30] P. Calabrese, P. Parruccini, A. I. Sokolov, Phys. Rev. B, 66:18 (2002), 180403, 4 pp., arXiv: cond-mat/0205046 | DOI

[31] P. Calabrese, A. Celi, Phys. Rev. B, 66:18 (2002), 184410, 14 pp., arXiv: cond-mat/0111118 | DOI

[32] P. Calabrese, E. V. Orlov, P. Parruccini, A. I. Sokolov, Phys. Rev. B, 67:2 (2003), 024413, 9 pp., arXiv: cond-mat/0207187 | DOI