Phase transitions in two dimensions and multiloop renormalization group expansions
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 140-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss using the field theory renormalization group (RG) to study the critical behavior of two-dimensional (2D) models. We write the RG functions of the 2D $\lambda\phi^4$ Euclidean $n$-vector theory up to five-loop terms, give numerical estimates obtained from these series by Padé–Borel–Leroy resummation, and compare them with their exact counterparts known for $n=1,0,-1$. From the RG series, we then derive pseudo-$\epsilon$-expansions for the Wilson fixed point location $g^*$, critical exponents, and the universal ratio $R_6=g_6/g^2$, where $g_6$ is the effective sextic coupling constant. We show that the obtained expansions are “friendler” than the original RG series: the higher-order coefficients of the pseudo-$\epsilon$-expansions for $g^*$, $R_6$, and $\gamma^{-1}$ turn out to be considerably smaller than their RG analogues. This allows resumming the pseudo-$\epsilon$-expansions using simple Padé approximants without the Borel–Leroy transformation. Moreover, we find that the numerical estimates obtained using the pseudo-$\epsilon$-expansions for $g^*$ and $\gamma^{-1}$ are closer to the known exact values than those obtained from the five-loop RG series using the Padé–Borel–Leroy resummation.
Keywords: renormalization group, two-dimensional Ising model, $n$-vector model, five-loop expansion, critical exponent
Mots-clés : pseudo-$\epsilon$-expansion.
@article{TMF_2013_176_1_a13,
     author = {A. I. Sokolov},
     title = {Phase transitions in two dimensions and multiloop renormalization group expansions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {140--149},
     publisher = {mathdoc},
     volume = {176},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/}
}
TY  - JOUR
AU  - A. I. Sokolov
TI  - Phase transitions in two dimensions and multiloop renormalization group expansions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 140
EP  - 149
VL  - 176
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/
LA  - ru
ID  - TMF_2013_176_1_a13
ER  - 
%0 Journal Article
%A A. I. Sokolov
%T Phase transitions in two dimensions and multiloop renormalization group expansions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 140-149
%V 176
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/
%G ru
%F TMF_2013_176_1_a13
A. I. Sokolov. Phase transitions in two dimensions and multiloop renormalization group expansions. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a13/