Conservation laws for classical particles in anti-de Sitter–Beltrami space
Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 13-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behavior of free classical pointlike particles is governed by conservation laws in the anti-de Sitter space. We present the general form of these laws and their realization in the Beltrami coordinates. In these coordinates, we can pass to the nonrelativistic limit resulting in physics in the $R$ space. We construct the initial covariant distribution function for an ideal gas uniformly filling the entire $R$ space.
Keywords: relativity principle, relativistic kinematics, anti-de Sitter space, Beltrami coordinates.
@article{TMF_2013_176_1_a1,
     author = {T. Angsachon and S. N. Manida and M. E. Chaikovskii},
     title = {Conservation laws for classical particles in {anti-de~Sitter{\textendash}Beltrami} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {13--21},
     year = {2013},
     volume = {176},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a1/}
}
TY  - JOUR
AU  - T. Angsachon
AU  - S. N. Manida
AU  - M. E. Chaikovskii
TI  - Conservation laws for classical particles in anti-de Sitter–Beltrami space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 13
EP  - 21
VL  - 176
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a1/
LA  - ru
ID  - TMF_2013_176_1_a1
ER  - 
%0 Journal Article
%A T. Angsachon
%A S. N. Manida
%A M. E. Chaikovskii
%T Conservation laws for classical particles in anti-de Sitter–Beltrami space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 13-21
%V 176
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a1/
%G ru
%F TMF_2013_176_1_a1
T. Angsachon; S. N. Manida; M. E. Chaikovskii. Conservation laws for classical particles in anti-de Sitter–Beltrami space. Teoretičeskaâ i matematičeskaâ fizika, Tome 176 (2013) no. 1, pp. 13-21. http://geodesic.mathdoc.fr/item/TMF_2013_176_1_a1/

[1] R. Aldrovandi, J. G. Pereira, A second Poincaré group, arXiv: gr-qc/9809061

[2] R. Aldrovandi, J. P. Beltrán Almeida, J. G. Pereira, Internat. J. Modern Phys. D, 13:10 (2004), 2241–2248, arXiv: gr-qc/0405104 | DOI | Zbl

[3] R. Aldrovandi, J. P. Beltrán Almeida, J. G. Pereira, Class. Quantum Grav., 24:6 (2007), 1385–1404, arXiv: gr-qc/0606122 | DOI | MR | Zbl

[4] H.-Y. Guo, Sci. China Ser. A, 51:4 (2008), 568–603, arXiv: 0707.3855 | DOI | MR | Zbl

[5] H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, B. Zhou, On de Sitter invariant special relativity and cosmological constant as origin of inertia, arXiv: hep-th/0405137

[6] H.-Y. Guo, C.-G. Huang, H.-T. Wu, B. Zhou, The principle of relativity, kinematics and algebraic relations, arXiv: 0812.0871

[7] H.-Y. Guo, H.-T. Wu, B. Zhou, Phys. Lett. B, 670:4–5 (2009), 437–441, arXiv: 0809.3562 | DOI | MR

[8] H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, B. Zhou, Class. Quantum Grav., 24:16 (2007), 4009–4035, arXiv: gr-qc/0703078 | DOI | MR | Zbl

[9] H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, B. Zhou, Front. Phys. China, 2:3 (2007), 358–363, arXiv: hep-th/0607016 | DOI

[10] H.-Y. Guo, The Beltrami model of de Sitter space: from Snyder's quantized space-time to de Sitter invariant relativity, arXiv: hep-th/0607017

[11] S. Cacciatori, V. Gorini, A. Kamenshchik, Ann. Phys. (8), 17:9–10 (2008), 728–768, arXiv: 0807.3009 | DOI | MR | Zbl

[12] S. Cacciatori, V. Gorini, A. Kamenshchik, U. Moschella, Class. Quantum Grav., 25:7 (2008), 075008, 23 pp., arXiv: 0710.0315 | DOI | MR | Zbl

[13] S. N. Manida, TMF, 169:2 (2011), 323–336 | DOI | MR | Zbl

[14] S. N. Manida, Fock–Lorentz transformations and time-varying speed of light, arXiv: gr-qc/9905046

[15] S. N. Manida, Dopolnitelnye glavy kursa obschei fiziki. Mekhanika, Izd-vo “SOLO”, SPb., 2007

[16] O. Jahn, V. V. Sreedhar, Amer. J. Phys., 69:10 (2001), 1039–1043, arXiv: math-phys/0102011 | DOI | MR | Zbl

[17] L. O'Raifeartaigh, V. V. Sreedhar, Ann. Phys., 293:2 (2001), 215–227, arXiv: hep-th/0007199 | DOI | MR | Zbl

[18] R. Jackiw, Ann. Phys., 129:1 (1980), 183–200 | DOI | MR

[19] U. Niederer, Helv. Phys. Acta, 45:5 (1972), 802–810 | MR

[20] C. R. Hagen, Phys. Rev. D, 5:2 (1972), 377–388 | DOI

[21] R. Jackiw, Phys. Today, 25:1 (1972), 23–29 | DOI