Multivariate Chebyshev polynomials in terms of singular elements
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 419-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the direct correspondence between Weyl anti-invariant functions and multivariate second-type Chebyshev polynomials to substantially simplify most operations with multivariate polynomials. We illustrate the obtained results by studying bivariate polynomials of the second type for root systems $A_1\oplus A_1$, $B_2$, and $G_2$.
Keywords: generalized Chebyshev polynomial, semisimple Lie algebra, representation theory, Weyl group.
@article{TMF_2013_175_3_a9,
     author = {V. D. Lyakhovsky},
     title = {Multivariate {Chebyshev} polynomials in terms of singular elements},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--428},
     year = {2013},
     volume = {175},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a9/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Multivariate Chebyshev polynomials in terms of singular elements
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 419
EP  - 428
VL  - 175
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a9/
LA  - ru
ID  - TMF_2013_175_3_a9
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Multivariate Chebyshev polynomials in terms of singular elements
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 419-428
%V 175
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a9/
%G ru
%F TMF_2013_175_3_a9
V. D. Lyakhovsky. Multivariate Chebyshev polynomials in terms of singular elements. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 419-428. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a9/

[1] G. Dupont, Algebr. Represent. Theory, 15:3 (2012), 527–549 | DOI | MR | Zbl

[2] V. V. Borzov, E. V. Damaskinskii, TMF, 175:3 (2013), 373–380 | DOI | MR

[3] G. von Gehlen, Sh. Roan, The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials, arXiv: hep-th/0104144 | MR

[4] T. H. Koornwinder, Indag. Math., 77:1 (1974), 48–58 ; 59–66 ; 77:4 (1974), 357–369 ; 370–381 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI

[5] R. J. Beerends, Trans. AMS, 328:2 (1991), 779–814 | DOI | MR | Zbl

[6] B. Ryland, “Multivariate Chebyshev approximation”, International workshop MaGIC-2008 (Renon, Bolzano, Italy, February 18–21, 2008) www.math.ntnu.no/num/magic/2008

[7] M. Nesterenko, R. Moody, J. Patera, A. Tereszkiewicz, Orthogonal polynomials of compact simple Lie groups, arXiv: 1001.3683 | MR

[8] V. D. Lyakhovsky, Ph. V. Uvarov, J. Phys. A, 46:12 (2013), 125201, 23 pp. | DOI | MR | Zbl

[9] A. Klimyk, J. Patera, SIGMA, 2 (2006), 006, 60 pp. | DOI | MR | Zbl

[10] G. Leng, Adv. Engin. Software, 28:2 (1997), 133–141 | DOI

[11] H. Li, J. Sun, Y. Xu, SIGMA, 8 (2012), 067, 29 pp. | DOI | MR | Zbl