Multivariate Chebyshev polynomials in terms of singular elements
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 419-428
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the direct correspondence between Weyl anti-invariant functions and multivariate second-type Chebyshev polynomials to substantially simplify most operations with multivariate polynomials. We illustrate the obtained results by studying bivariate polynomials of the second type for root systems $A_1\oplus A_1$, $B_2$, and $G_2$.
Keywords:
generalized Chebyshev polynomial, semisimple Lie algebra, representation theory, Weyl group.
@article{TMF_2013_175_3_a9,
author = {V. D. Lyakhovsky},
title = {Multivariate {Chebyshev} polynomials in terms of singular elements},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {419--428},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a9/}
}
V. D. Lyakhovsky. Multivariate Chebyshev polynomials in terms of singular elements. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 419-428. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a9/