Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 408-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the Balitsky–Fadin–Kuraev–Lipatov approach to high-energy scattering in QCD and supersymmetric gauge theories. At a large number of colors, the equations for the gluon composite states in the $t$-channel have remarkable mathematical properties including their Möbius invariance, holomorphic separability, duality symmetry, and integrability. We formulate a theory of Reggeized gluon interactions in the form of a gauge-invariant effective action local in particle rapidities. In the maximally extended $N=4$ supersymmetry, the Pomeron is dual to the Reggeized graviton in the ten-dimensional anti-de Sitter space. As a result, the Gribov Pomeron calculus should be reformulated here as a generally covariant effective field theory for the Reggeized gravitons. We construct the corresponding effective action, which allows calculating the graviton Regge trajectory and its couplings. We sum the double-logarithmic contributions for amplitudes with graviton quantum numbers in the $t$-channel in the Einstein–Hilbert gravity and its supersymmetric generalizations. As the supergravity rank $N$ increases, the double-logarithmic amplitudes begin to decrease rapidly compared with their Born contributions.
Keywords: quantum gravity, high-energy asymptotic behavior, behavior of Regge-type amplitudes, double-logarithmic approximation.
@article{TMF_2013_175_3_a8,
     author = {L. N. Lipatov},
     title = {Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--418},
     year = {2013},
     volume = {175},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a8/}
}
TY  - JOUR
AU  - L. N. Lipatov
TI  - Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 408
EP  - 418
VL  - 175
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a8/
LA  - ru
ID  - TMF_2013_175_3_a8
ER  - 
%0 Journal Article
%A L. N. Lipatov
%T Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 408-418
%V 175
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a8/
%G ru
%F TMF_2013_175_3_a8
L. N. Lipatov. Double-logarithmic asymptotics of scattering amplitudes in gravity and supergravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 408-418. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a8/

[1] L. N. Lipatov, YaF, 23 (1976), 642–656; V. S. Fadin, E. A. Kuraev, L. N. Lipatov, Phys. Lett. B, 60:1 (1975), 50–52 ; Е. А. Кураев, Л. Н. Липатов, В. С. Фадин, ЖЭТФ, 71 (1976), 840–855; 72 (1977), 377–389 ; Я. Я. Балицкий, Л. Н. Липатов, ЯФ, 28 (1978), 1597–1611 | DOI | MR

[2] V. S. Fadin, L. N. Lipatov, Phys. Lett. B, 429:1–2 (1998), 127–134, arXiv: ; M. Ciafaloni, G. Camici, Phys. Lett. B, 430:3–4 (1998), 349–354, arXiv: ; A. V. Kotikov, L. N. Lipatov, Nucl. Phys. B, 582:1–3, 2000 hep-ph/9802290hep-ph/9803389 | DOI | DOI | DOI

[3] L. N. Lipatov, Phys. Lett. B, 309:3–4 (1993), 394–396 | DOI

[4] L. N. Lipatov, ZhETF, 90:5 (1986), 1536–1552

[5] L. N. Lipatov, Phys. Lett. B, 251:2 (1990), 284–287 ; “Pomeron in quantum chromodynamics”, Perturbative Quantum Chromodynamics, Advanced Series on Directions in High Energy Physics, 5, ed. A. H. Mueller, World Sci., Singapore, 1989, 411–489 | DOI | DOI | Zbl

[6] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[7] L. N. Lipatov, Nucl. Phys. B, 548:1–3 (1999), 328–362, arXiv: hep-ph/9812336 | DOI

[8] L. N. Lipatov, Pisma v ZhETF, 59 (1994), 571–574, arXiv: hep-th/9311037

[9] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[10] L. D. Faddeev, G. P. Korchemsky, Phys. Lett. B, 342:1–4 (1995), 311–322, arXiv: hep-th/9404173 | DOI

[11] L. N. Lipatov, Nucl. Phys. B, 452:1–2 (1995), 369–397 ; Phys. Rept., 286 (1997), 131–198 | DOI | DOI

[12] E. N. Antonov, I. O. Cherednikov, E. A. Kuraev, L. N. Lipatov, Nucl. Phys. B, 721:1–3 (2005), 111–135, arXiv: hep-ph/0411185 | DOI | MR | Zbl

[13] Z. Bern, L. J. Dixon, V. A. Smirnov, Phys. Rev. D, 72:8 (2005), 085001, 27 pp., arXiv: hep-th/0505205 | DOI | MR

[14] V. S. Fadin, L. N. Lipatov, Phys. Lett. B, 706:4–5 (2012), 470–476 | DOI

[15] J. Bartels, L. N. Lipatov, G. P. Vacca, Ward identities for amplitudes with reggeized gluons, arXiv: 1205.2530

[16] J. Maldacena, Adv. Theor. Math. Phys., 2 (1998), 231–252 | DOI | MR | Zbl

[17] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, Phys. Lett. B, 428:1–2 (1998), 105–114, arXiv: hep-th/9802109 | DOI | MR | Zbl

[18] E. Witten, Adv. Theor. Math. Phys., 2:2 (1998), 253–291, arXiv: hep-th/9802150 | DOI | MR | Zbl

[19] J. Polchinski, M. J. Strassler, JHEP, 05 (2003), 012, 37 pp., arXiv: hep-th/0209211 | DOI | MR

[20] A. V. Kotikov, L. N. Lipatov, A. V. Onishchenko, V. N. Velizhanin, Phys. Lett. B, 595:1–4 (2004), 521–529, arXiv: ; Erratum, 632:5–6 (2006), 754–756 hep-th/0404092 | DOI | MR | Zbl | DOI | MR | Zbl

[21] R. C. Brower, J. Polchinski, M. J. Strassler, C. I. Tan, JHEP, 12 (2007), 005, 62 pp., arXiv: hep-th/0603115 | DOI | MR | Zbl

[22] T. Łukowski, A. Rej, V. N. Velizhanin, Nucl. Phys. B, 831:1–2 (2010), 105–132, arXiv: 0912.1624 | DOI | MR

[23] B. Basso, An exact slope for AdS/CFT, arXiv: 1109.3154

[24] A. P. Bukhvostov, G. V. Frolov, L. N. Lipatov, E. A. Kuraev, Nucl. Phys. B, 258 (1985), 601–646 | DOI

[25] L. N. Lipatov, “Evolution equations in QCD”, Perspectives in Hadronic Physics, Proceedings of the Conference ICTP (Trieste, Italy, 12–16 May, 1997), eds. S. Boffi, M. M. Giannini, C. Ciofi Degli Atti, World Sci., Singapore, 1997, 413–427

[26] L. N. Lipatov, Phys. Lett. B, 116:6 (1982), 411–413 | DOI

[27] L. N. Lipatov, Effective action for the Regge processes in gravity, arXiv: 1105.3127

[28] J. Bartels, L. N. Lipatov, A. Sabio Vera, Double-logarithms in Einstein–Hilbert gravity and supergravity, arXiv: 1208.3423 | MR

[29] R. Kirschner, L. N. Lipatov, Nucl. Phys. B, 213:1 (1983), 122–148 | DOI