Chebyshev–Koornwinder oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 379-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a generalized oscillator related to bivariate Chebyshev–Koornwinder polynomials associated with the Lie algebra $\mathfrak{sl}(3)$ root system.
Keywords: generalized oscillator, Chebyshev–Koornwinder polynomial.
@article{TMF_2013_175_3_a5,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Chebyshev{\textendash}Koornwinder oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {379--387},
     year = {2013},
     volume = {175},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a5/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Chebyshev–Koornwinder oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 379
EP  - 387
VL  - 175
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a5/
LA  - ru
ID  - TMF_2013_175_3_a5
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Chebyshev–Koornwinder oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 379-387
%V 175
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a5/
%G ru
%F TMF_2013_175_3_a5
V. V. Borzov; E. V. Damaskinsky. Chebyshev–Koornwinder oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 379-387. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a5/

[1] P. P. Kulish, V. D. Lyakhovskii, O. V. Postnova, TMF, 171:2 (2012), 283–293 | DOI | DOI | Zbl

[2] P. P. Kulish, “Integrable spin chains and representation theory”, Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics (Chern Institute of Mathematics, Tianjin, China, August 20–26, 2012), eds. C. Bai, I.-P. Garean, M.-L. Ge, World Sci., Singapore, 2013 | MR | Zbl

[3] H. Bacry, “Generalized Chebyshev polynomials and characters of $GL(N,C)$ and $SL(N,C)$”, Group Theoretical Methods in Physics, Lecture Notes in Physics, 201, eds. G. Penardo, G. Ghirardi, T. Weber, Springer, Berlin, 1984, 483–485 | DOI | MR

[4] R. J. Beerends, Trans. AMS, 328:2 (1991), 779–814 | DOI | MR | Zbl

[5] T. H. Koornwinder, Indag. Math., 77:1 (1974), 48–58 ; 59–66 ; 77:4 (1974), 357–369 ; 370–381 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI

[6] P. K. Suetin, Ortogonalnye mnogochleny po dvum peremennym, Nauka, M., 1988 | MR | Zbl

[7] V. V. Borzov, Integral Transform. Spec. Funct., 12:2 (2001), 115–138 | DOI | MR | Zbl