Embeddings for solutions of Einstein equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 429-441
Voir la notice de l'article provenant de la source Math-Net.Ru
We study isometric embeddings of some solutions of the Einstein equations with sufficiently high symmetries into a flat ambient space. We briefly describe a method for constructing surfaces with a given symmetry. We discuss all minimal embeddings of the Schwarzschild metric obtained using this method and show how the method can be used to construct all minimal embeddings for the Friedmann models. We classify all the embeddings in terms of realizations of symmetries of the corresponding solutions.
Keywords:
theory of gravity, isometric embedding, embedding theory, Schwarzschild metric embedding, asymptotically flat embedding
Mots-clés : extra dimension.
Mots-clés : extra dimension.
@article{TMF_2013_175_3_a10,
author = {S. A. Paston and A. A. Sheikin},
title = {Embeddings for solutions of {Einstein} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {429--441},
publisher = {mathdoc},
volume = {175},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a10/}
}
S. A. Paston; A. A. Sheikin. Embeddings for solutions of Einstein equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 429-441. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a10/