Embeddings for solutions of Einstein equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 429-441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study isometric embeddings of some solutions of the Einstein equations with sufficiently high symmetries into a flat ambient space. We briefly describe a method for constructing surfaces with a given symmetry. We discuss all minimal embeddings of the Schwarzschild metric obtained using this method and show how the method can be used to construct all minimal embeddings for the Friedmann models. We classify all the embeddings in terms of realizations of symmetries of the corresponding solutions.
Keywords: theory of gravity, isometric embedding, embedding theory, Schwarzschild metric embedding, asymptotically flat embedding
Mots-clés : extra dimension.
@article{TMF_2013_175_3_a10,
     author = {S. A. Paston and A. A. Sheikin},
     title = {Embeddings for solutions of {Einstein} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--441},
     year = {2013},
     volume = {175},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a10/}
}
TY  - JOUR
AU  - S. A. Paston
AU  - A. A. Sheikin
TI  - Embeddings for solutions of Einstein equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 429
EP  - 441
VL  - 175
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a10/
LA  - ru
ID  - TMF_2013_175_3_a10
ER  - 
%0 Journal Article
%A S. A. Paston
%A A. A. Sheikin
%T Embeddings for solutions of Einstein equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 429-441
%V 175
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a10/
%G ru
%F TMF_2013_175_3_a10
S. A. Paston; A. A. Sheikin. Embeddings for solutions of Einstein equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 429-441. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a10/

[1] M. Janet, Ann. Soc. Polon. Math., 5 (1926), 38–43 | Zbl

[2] E. Kartan, Ann. Soc. Polon. Math., 6 (1927), 1–7

[3] A. Friedman, J. Math. Mech., 10 (1961), 625–649 | MR | Zbl

[4] D. Kramer, Kh. Shtefann, M. Mak-Kallum, E. Kherlt, Tochnye resheniya uravnenii Einshteina, ed. E. Shmuttser, Energoizdat, M., 1982 | MR | MR

[5] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, II, Nauka, M., 1981 | MR

[6] C. Fronsdal, Phys. Rev., 116:3 (1959), 778–781 | DOI | MR | Zbl

[7] T. Regge, C. Teitelboim, “General relativity à la string: a progress report”, Proceedings of the First Marcel Grossmann Meeting on General Relativity (Trieste, Italy, 1975), ed. R. Ruffini, North-Holland, Amsterdam, 1977, 77–88

[8] S. Deser, F. A. E. Pirani, D. C. Robinson, Phys. Rev. D, 14:12 (1976), 3301–3303 | DOI

[9] A. Davidson, Class. Quantum Grav., 16:3 (1999), 653–659, arXiv: gr-qc/9710005 | DOI | MR | Zbl

[10] A. Davidson, D. Karasik, Y. Lederer, Cold dark matter from dark energy, arXiv: gr-qc/0111107

[11] S. A. Paston, A. A. Sheykin, Internat. J. Modern Phys. D, 21:5 (2012), 1250043, 19 pp., arXiv: 1106.5212 | DOI | MR | Zbl

[12] V. Tapia, Class. Quant. Grav., 6:3 (1989), L49–L56 | DOI | MR | Zbl

[13] R. Capovilla, A. Escalante, J. Guven, E. Rojas, Internat. J. Theor. Phys., 48:9 (2009), 2486–2498, arXiv: gr-qc/0603126 | DOI

[14] V. A. Franke, V. Tapia, Nuovo Cimento B, 107:6 (1992), 611–630 | DOI | MR

[15] D. Karasik, A. Davidson, Phys. Rev. D, 67:6 (2003), 064012, 17 pp., arXiv: gr-qc/0207061 | DOI | MR | Zbl

[16] S. A. Paston, V. A. Franke, TMF, 153:2 (2007), 271–288, arXiv: 0711.0576 | DOI | DOI | MR | Zbl

[17] S. A. Paston, A. N. Semenova, Internat. J. Theor. Phys., 49:11 (2010), 2648–2658, arXiv: 1003.0172 | DOI | MR | Zbl

[18] S. A. Paston, TMF, 169:2 (2011), 285–296, arXiv: 1111.1104 | DOI | DOI | MR | Zbl

[19] S. A. Paston, Gravitatsiya kak teoriya vlozheniya, LAMBERT Acad. Publ., Saarbrucken, 2012

[20] M. Pavsic, V. Tapia, Resource letter on geometrical results for embeddings and branes, arXiv: gr-qc/0010045

[21] E. Kasner, Amer. J. Math., 43:2 (1921), 126–129 | DOI | MR | Zbl

[22] J. Rosen, Rev. Modern Phys., 37:1 (1965), 204–214 | DOI | MR | Zbl

[23] C. D. Collinson, J. Math. Phys., 9 (1968), 403–410 | DOI | Zbl

[24] H. Goenner, “Local isometric embedding of riemannian manifolds and Einstein's theory of gravitation”, General Relativity and Gravitation, 1, ed. A. Held, Plenum Press, New York–London, 1980, 441–468 | MR

[25] S. A. Paston, A. A. Sheykin, Class. Quant. Grav., 29:9 (2012), 095022, 17 pp., arXiv: 1202.1204 | DOI | MR | Zbl

[26] E. Kasner, Amer. J. Math., 43:2 (1921), 130–133 | DOI | MR | Zbl

[27] T. Fujitani, M. Ikeda, M. Matsumoto, J. Math. Kyoto Univ., 1 (1961), 43–61 | DOI | MR | Zbl

[28] A. Davidson, U. Paz, Found. Phys., 30:5 (2000), 785–794 | DOI | MR

[29] H. P. Robertson, Rev. Modern Phys., 5:1 (1933), 62–90 | DOI | Zbl

[30] I. E. Gulamov, M. N. Smolyakov, Gen. Relativ. Grav., 44:3 (2012), 703–710, arXiv: 1111.0687 | DOI | MR | Zbl