Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals: Proof of the main relation
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 325-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for calculating the $\beta$-function and anomalous dimensions, convenient for numerical calculations in the $\varepsilon$-expansion framework, was previously proposed, and the relation underlying the method was verified up to the four-loop approximation. We prove this relation in all orders of the perturbation theory.
Keywords: renormalization group, $\varepsilon$-expansion, multiloop diagram, critical exponent.
@article{TMF_2013_175_3_a0,
     author = {L. Ts. Adzhemyan and M. V. Kompaniets and S. V. Novikov and V. K. Sazonov},
     title = {Representation of the~$\beta$-function and anomalous dimensions by nonsingular integrals: {Proof} of the~main relation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {325--336},
     year = {2013},
     volume = {175},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a0/}
}
TY  - JOUR
AU  - L. Ts. Adzhemyan
AU  - M. V. Kompaniets
AU  - S. V. Novikov
AU  - V. K. Sazonov
TI  - Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals: Proof of the main relation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 325
EP  - 336
VL  - 175
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a0/
LA  - ru
ID  - TMF_2013_175_3_a0
ER  - 
%0 Journal Article
%A L. Ts. Adzhemyan
%A M. V. Kompaniets
%A S. V. Novikov
%A V. K. Sazonov
%T Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals: Proof of the main relation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 325-336
%V 175
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a0/
%G ru
%F TMF_2013_175_3_a0
L. Ts. Adzhemyan; M. V. Kompaniets; S. V. Novikov; V. K. Sazonov. Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals: Proof of the main relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 3, pp. 325-336. http://geodesic.mathdoc.fr/item/TMF_2013_175_3_a0/

[1] L. Ts. Adzhemyan, M. V. Kompaniets, TMF, 169:1 (2011), 100–111 | DOI | DOI | Zbl

[2] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[3] O. I. Zavyalov, Perenormirovannye diagrammy Feinmana, Nauka, M., 1979 | MR

[4] K. G. Chetyrkin, A. L. Kataev, F. V. Tkachev, Phys. Lett. B, 99:2 (1981), 147–150 ; 101:6 (1981), 457–458 ; H. Kleinert, J. Neu, V. Shulte-Frohlinde, K. G. Chetyrkin, S. A. Larin, Phys. Lett. B, 272:1–2 (1991), 39–44 ; Erratum 319:4 (1993), 545 | DOI | MR | DOI | MR | DOI | DOI | MR

[5] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford, 2002 ; H. Kleinert, V. Schulte-Frohlinde, Critical Properties of $\phi^4$-Theories, World Sci., River Edge, NJ, 2001 | MR | MR