A charged composite particle in a constant electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 247-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the motion of a composite charged particle in a constant electric field. Using the billiard formalism, we establish exact laws of motion for such a particle with a small number of internal degrees of freedom and propose using a generalized Schwarz principle to straighten trajectories in the field presence. Within the billiard formalism, we obtain regimes of motion of a composite particle with two internal degrees of freedom in a constant field.
Keywords: particle with internal degrees of freedom, constant field
Mots-clés : billiard.
@article{TMF_2013_175_2_a7,
     author = {V. V. Yanovskii and A. V. Tur and Yu. N. Maslovsky},
     title = {A~charged composite particle in a~constant electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--278},
     year = {2013},
     volume = {175},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a7/}
}
TY  - JOUR
AU  - V. V. Yanovskii
AU  - A. V. Tur
AU  - Yu. N. Maslovsky
TI  - A charged composite particle in a constant electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 247
EP  - 278
VL  - 175
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a7/
LA  - ru
ID  - TMF_2013_175_2_a7
ER  - 
%0 Journal Article
%A V. V. Yanovskii
%A A. V. Tur
%A Yu. N. Maslovsky
%T A charged composite particle in a constant electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 247-278
%V 175
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a7/
%G ru
%F TMF_2013_175_2_a7
V. V. Yanovskii; A. V. Tur; Yu. N. Maslovsky. A charged composite particle in a constant electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 247-278. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a7/

[1] A. I. Gusev, Nanomaterialy, nanostruktury, nanotekhnologii, Fizmatlit, M., 2005

[2] V. V. Yanovskii, A. V. Tur, Yu. N. Maslovskii, ZhETF, 133:1 (2008), 220–236

[3] B. W. Smith, M. Monthioux, D. E. Luzzi, Nature, 396:6709 (1998), 323–324 | DOI

[4] M. Monthioux, Carbon, 40:10 (2002), 1809–1823 | DOI

[5] K. Suenaga, T. Okazaki, K. Hirahara, S. Bandow, H. Kato, A. Taninaka, H. Shinohara, S. Iijima, Appl. Phys. A, 76:4 (2003), 445–447 | DOI

[6] G. Shill, Katenany, rotaksany i uzly, Mir, M., 1973

[7] I. T. Harrison, S. Harrison, J. Amer. Chem. Soc., 89:22 (1967), 5723–5724 | DOI

[8] J. W. Choi, A. H. Flood, D. W. Steuerman, S. Nygaard, A. B. Braunschweig, N. N. P. Moonen, B. W. Laursen, Y. Luo, E. DeIonno, A. J. Peters, J. O. Jeppesen, K. Xu, J. F. Stoddart, J. R. Heath, Chem. Eur. J., 12:1 (2006), 261–279 | DOI

[9] J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. Tseng, J. F. Stoddart, J. R. Heath, Nature, 445:7126 (2007), 414–417 | DOI

[10] G. A. Galperin, N. I. Chernov, Billiardy i khaos, Znanie, M., 1991 | MR | Zbl

[11] B. N. Delone, D. A. Raikov, Analiticheskaya geometriya, v. 2, Gostekhizdat, M.–L., 1949 | MR | Zbl

[12] Ya. G. Sinai, UMN, 33:1(199) (1978), 229–230 | DOI | MR | Zbl

[13] P. H. Richter, H.-J. Scholz, A. Wittek, Nonlinearity, 3:1 (1990), 45–67 | DOI | MR | Zbl

[14] N. D. Whelan, D. A. Goodings, J. K. Cannizzo, Phys. Rev. A, 42:2 (1990), 742–754 | DOI | MR

[15] T. Szeredi, D. A. Goodings, Phys. Rev. E, 48:5 (1993), 3518–3528 | DOI | MR

[16] G. A. Galperin, A. N. Zemlyakov, Matematicheskie bilyardy, Nauka, M., 1990 | MR | Zbl

[17] E. Gutkin, H. Haydn, Bull. Amer. Math. Soc. (N.S.), 32:1 (1995), 50–56 | DOI | MR | Zbl

[18] P. R. Baldwin, Physica D, 29:3 (1988), 321–342 | DOI | MR | Zbl

[19] D. Turaev, V. Rom-Kedar, J. Statist. Phys., 112:3–4 (2003), 765–813 | DOI | MR | Zbl

[20] H. A. Oliveira, C. Manchein, M. W. Beims, Phys. Rev. E, 78:4 (2008), 046208, 9 pp., arXiv: 0903.0170 | DOI

[21] E. Gutkin, Physica D, 19:3 (1986), 311–333 | DOI | MR | Zbl

[22] S. V. Slipushenko, A. V. Tur, V. V. Yanovskii, Izv. vuzov. Prikl. nelin. dinam., 18:4 (2010), 91–110 | Zbl