Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 226-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the motion of a relativistic charged zero-mass fermion in Coulomb and Aharonov–Bohm potentials in $2+1$ dimensions. With these singular external potentials, we construct one-parameter self-adjoint Dirac Hamiltonians classified by self-adjoint boundary conditions. We show that if the so-called effective charge becomes overcritical, then virtual (quasistationary) bound states occur. The wave functions corresponding to these states have large amplitudes near the Coulomb center, and their energy spectrum is quasidiscrete and consists of a number of broadened levels of a width related to the inverse lifetime of the quasistationary state. We derive equations for the quasidiscrete spectra and quasistationary state lifetimes and solve these equations in physically interesting cases. We study the so-called local densities of state, which can be assessed in physical experiments, as functions of the energy and the problem parameters, investigating these densities both analytically and graphically.
Keywords: singular external potential, self-adjoint extension of a Hamiltonian, self-adjoint boundary condition, Aharonov–Bohm potential in 2+1 dimensions, virtual (quasistationary) bound state, quasidiscrete energy level, level width.
Mots-clés : massless fermion, Coulomb potential in 2+1 dimensions
@article{TMF_2013_175_2_a6,
     author = {V. R. Khalilov},
     title = {Zero-mass fermions in {Coulomb} and {Aharonov{\textendash}Bohm} potentials in 2+1 dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--246},
     year = {2013},
     volume = {175},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a6/}
}
TY  - JOUR
AU  - V. R. Khalilov
TI  - Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 226
EP  - 246
VL  - 175
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a6/
LA  - ru
ID  - TMF_2013_175_2_a6
ER  - 
%0 Journal Article
%A V. R. Khalilov
%T Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 226-246
%V 175
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a6/
%G ru
%F TMF_2013_175_2_a6
V. R. Khalilov. Zero-mass fermions in Coulomb and Aharonov–Bohm potentials in 2+1 dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 226-246. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a6/

[1] Y. Aharonov, D. Bohm, Phys. Rev., 115:3 (1959), 485–491 | DOI | MR | Zbl

[2] R. Prendzh, S. Girvin (red.), Kvantovyi effekt Kholla, Mir, M., 1989

[3] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Teaneck, NJ, 1990 | MR

[4] C. R. Hagen, Phys. Rev. Lett., 64:5 (1990), 503–506 | DOI | MR | Zbl

[5] M. G. Alford, F. Wilczek, Phys. Rev. Lett., 62:10 (1989), 1071–1074 | DOI | MR

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 306:5696 (2004), 666–669, arXiv: cond-mat/0410550 | DOI

[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Modern Phys., 81:1 (2009), 109–162, arXiv: 0709.1163 | DOI

[8] N. M. R. Peres, Rev. Modern Phys., 82:3 (2010), 2673–2700, arXiv: 1007.2849 | DOI

[9] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, A. H. Castro Neto, Rev. Modern Phys., 84:3 (2012), 1067–1125, arXiv: 1012.3484 | DOI

[10] K. S. Novoselov A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 438:7065 (2005), 197–200, arXiv: cond-mat/0509330 | DOI

[11] Z. Jiang, Y. Zhang, H. L. Stormer, P. Kim, Phys. Rev. Lett., 99:10 (2007), 106802, 4 pp., arXiv: 0705.1102 | DOI

[12] V. M. Pereira, J. Nilsson, A. H. Castro Neto, Phys. Rev. Lett., 99:16 (2007), 166802, 4 pp., arXiv: 0706.2872 | DOI

[13] A. V. Shytov, M. I. Katsnelson, L. S. Levitov, Phys. Rev. Lett., 99:23 (2007), 236801, 4 pp., arXiv: 0705.4663 | DOI

[14] I. F. Herbut, Phys. Rev. Lett., 104:6 (2010), 066404, 4 pp., arXiv: 0909.4231 | DOI

[15] A. K. Geim, K. S. Novoselov, Nature Mater., 6:3 (2007), 183 –191 | DOI

[16] J. Gonzarlez, F. Guinea, M. A. H. Vozmediano, Nucl. Phys. B, 424 (1994), 595–618 ; J. Low Temp. Phys., 99:3–4 (1995), 287–292 | DOI | DOI

[17] R. Jackiw, A. I. Milstein, S.-Y. Pi, I. S. Terekhov, Phys. Rev. B, 80:3 (2009), 033413, 3 pp., arXiv: 0904.2046 | DOI

[18] I. S. Terekhov, A. I. Milstein, V. N. Kotov, O. P. Sushkov, Phys. Rev. Lett., 100:7 (2008), 076803, 4 pp., arXiv: 0708.4263 | DOI

[19] I. V. Tyutin, Rasseyanie elektronov solenoidom, preprint No 27, FIAN, M., 1974, arXiv: 0801.2167

[20] Ya. B. Zeldovich, V. S. Popov, UFN, 105:3–4 (1971), 403–440 | DOI

[21] J. Rafelski, L. P. Fulcher, A. Klein, Phys. Rep., 38:5 (1978), 227–361 | DOI

[22] M. Soffel, B. Müller, W. Greiner, Phys. Rep. C, 85:2 (1982), 51–122 | DOI | MR

[23] T. Cowan, H. Backe, K. Bethge, H. Bokemeyer, H. Folger, J. S. Greenberg, K. Sakaguchi, D. Schwalm, J. Schweppe, K. E. Stiebing, P. Vincent, Phys. Rev. Lett., 56:5 (1986), 444–447 | DOI

[24] W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2009 | MR | Zbl

[25] V. R. Khalilov, TMF, 116:2 (1998), 277–287 | DOI | Zbl

[26] V. R. Khalilov, TMF, 158:2 (2009), 250–262 | DOI | Zbl

[27] V. R. Khalilov, C.-L. Ho, Ann. Phys., 323:5 (2008), 1280–1293, arXiv: 0708.3131 | DOI | MR | Zbl

[28] P. I. Fomin, V. P. Gusynin, V. A. Miransky, Yu. A. Sitenko, Riv. Nuovo Cimento, 6:5 (1983), 1–90 | DOI | MR

[29] A. V. Shytov, M. I. Katsnelson, L. S. Levitov, Phys. Rev. Lett., 99:24 (2007), 246802, 4 pp., arXiv: 0708.0837 | DOI

[30] O. V. Gamayun, E. V. Gorbar, V. P. Gusynin, Phys. Rev. B, 80:16 (2009), 165429, 14 pp., arXiv: 0907.5409 | DOI

[31] K. S. Gupta, S. Sen, Modern Phys. Lett. A, 24:2 (2009), 99–107, arXiv: 0805.3433 | DOI | Zbl

[32] B. L. Voronov, D. M. Gitman, I. V. Tyutin, TMF, 150:1 (2007), 41–84 | DOI | MR | Zbl

[33] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[34] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972 | MR

[35] Y. Hosotani, Phys. Lett. B, 319:1–3 (1993), 332–338 | DOI

[36] V. R. Khalilov, K.-E. Lee, J. Phys. A, 44:20 (2011), 205303, 15 pp. | DOI | MR | Zbl

[37] J.-N. Zhang, Coulomb screening of 2D massive Dirac fermions, arXiv: 1010.3148

[38] V. R. Khalilov, C. L. Ho, Modern Phys. Lett. A, 13:8 (1998), 615–622, arXiv: hep-th/9801012 | DOI

[39] V. R. Khalilov, Phys. Rev. A, 71:1 (2005), 012105, 6 pp., arXiv: quant-ph/0406033 | DOI

[40] V. R. Khalilov, TMF, 163:1 (2010), 132–139 | DOI | DOI | Zbl

[41] V. R. Khalilov, Ki Yn Li, TMF, 169:3 (2011), 368–390 | DOI | DOI | Zbl

[42] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1971 | MR | MR | Zbl

[43] A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, R. V. Gorbachev, Nano Lett., 12:9 (2012), 4629–4634, arXiv: 1206.3848 | DOI

[44] V. R. Khalilov, K.-E. Lee, Internat. J. Modern Phys. A, 27:29 (2012), 1250169, 14 pp. | DOI | MR | Zbl

[45] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[46] A. H. Castro Neto, V. N. Kotov, J. Nilsson, V. M. Pereira, N. M. R. Peres, B. Uchoa, Solid State Commun., 149:27–28 (2009), 1094–1100, arXiv: 0812.2072 | DOI