The generalized Kupershmidt deformation for constructing new discrete integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 178-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the KdV6 equation can be represented as the Kupershmidt deformation of the KdV equation. We propose a generalized Kupershmidt deformation for constructing new discrete integrable systems starting from the bi-Hamiltonian structure of a discrete integrable system. We consider the Toda, Kac–van Moerbeke, and Ablowitz–Ladik hierarchies and obtain Lax representations for these new deformed systems. The generalized Kupershmidt deformation provides a new way to construct discrete integrable systems.
Keywords: Kupershmidt deformation, bi-Hamiltonian system, discrete integrable system.
@article{TMF_2013_175_2_a3,
     author = {Yehui Huang and Runliang Lin and Yuqin Yao and Yunbo Zeng},
     title = {The~generalized {Kupershmidt} deformation for constructing new discrete integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {178--192},
     year = {2013},
     volume = {175},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a3/}
}
TY  - JOUR
AU  - Yehui Huang
AU  - Runliang Lin
AU  - Yuqin Yao
AU  - Yunbo Zeng
TI  - The generalized Kupershmidt deformation for constructing new discrete integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 178
EP  - 192
VL  - 175
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a3/
LA  - ru
ID  - TMF_2013_175_2_a3
ER  - 
%0 Journal Article
%A Yehui Huang
%A Runliang Lin
%A Yuqin Yao
%A Yunbo Zeng
%T The generalized Kupershmidt deformation for constructing new discrete integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 178-192
%V 175
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a3/
%G ru
%F TMF_2013_175_2_a3
Yehui Huang; Runliang Lin; Yuqin Yao; Yunbo Zeng. The generalized Kupershmidt deformation for constructing new discrete integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 178-192. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a3/

[1] B. A. Kupershmidt, Phys. Lett. A, 372:15 (2008), 2634–2639, arXiv: 0709.3848 | DOI | MR | Zbl

[2] B. Fuchssteiner, A. S. Fokas, Physica D, 4:1 (1981), 47–66 | DOI | MR | Zbl

[3] P. J. Olver, P. Rosenau, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR

[4] V. K. Mel'nikov, Lett. Math. Phys., 7:2 (1983), 129–136 | DOI | MR | Zbl

[5] V. K. Mel'nikov, Commun. Math. Phys., 112:4 (1987), 639–652 | DOI | MR | Zbl

[6] Y. B. Zeng, W.-X. Ma, R. L. Lin, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR | Zbl

[7] R. L. Lin, Y. B. Zeng, W.-X. Ma, Physica A, 291:1–4 (2001), 287–298 | DOI | MR | Zbl

[8] R. L. Lin, Y. Q. Yao, Y. B. Zeng, SIGMA, 2 (2006), 096, 8 pp. | DOI | MR | Zbl

[9] R. L. Lin, H. Peng, M. Mañas, J. Phys. A, 43:43 (2010), 434022, 15 pp., arXiv: 1005.3878 | DOI | MR | Zbl

[10] A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich, R. Turhan, J. Math. Phys., 49:7 (2008), 073516, 10 pp. | DOI | MR | Zbl

[11] A. Kundu, R. Sahadevan, L. Nalinidevi, J. Phys. A, 42:11 (2009), 115213, 13 pp., arXiv: 0811.0924 | DOI | MR | Zbl

[12] R. Sahadevan, L. Nalinidevi, J. Math. Phys., 50:5 (2009), 053505, 10 pp. | DOI | MR | Zbl

[13] P. Guha, J. Phys. A, 42:34 (2009), 345201, 17 pp. | DOI | MR | Zbl

[14] R. Zhou, J. Math. Phys., 50:12 (2009), 123502, 12 pp. | DOI | MR | Zbl

[15] Y. Q. Yao, Y. B. Zeng, Lett. Math. Phys., 86:2–3 (2008), 193–208, arXiv: 0810.1986 | DOI | MR | Zbl

[16] Y. Q. Yao, Y. B. Zeng, J. Math. Phys., 51:6 (2010), 063503, 14 pp., arXiv: 1005.0281 | DOI | MR | Zbl

[17] Y. Q. Yao, Y. H. Huang, Y. Wei, Y. B. Zeng, Appl. Math. Comput., 218:2 (2011), 583–591 | DOI | MR | Zbl

[18] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR | MR | Zbl

[19] R. L. Lin, W.-X. Ma, Y. B. Zeng, J. Phys. A, 35:23 (2002), 4915–4928 | DOI | MR | Zbl

[20] X. J. Liu, Y. B. Zeng, J. Phys. A, 38:41 (2005), 8951–8965 | DOI | MR | Zbl

[21] Y. B. Zeng, S. Rauch-Wojciechowski, J. Phys. A, 28:13 (1995), 3825–3840 | DOI | MR | Zbl

[22] M. J. Ablowitz, J. F. Ladik, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl

[23] Y. B. Zeng, S. Rauch-Wojciechowski, J. Phys. A, 28:1 (1995), 113–134 | DOI | MR | Zbl