Renormalization in the Cauchy problem for the Korteweg–de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 173-177
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the Cauchy problem for the Korteweg–de Vries equation with a small parameter at the highest derivative and a large gradient of the initial function. We construct an asymptotic solution of this problem by the renormalization method.
Keywords:
Korteweg–de Vries equation, Cauchy problem, asymptotic solution, renormalization.
@article{TMF_2013_175_2_a2,
author = {S. V. Zakharov},
title = {Renormalization in {the~Cauchy} problem for {the~Korteweg{\textendash}de} {Vries} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {173--177},
year = {2013},
volume = {175},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a2/}
}
S. V. Zakharov. Renormalization in the Cauchy problem for the Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 173-177. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a2/
[1] A. B. Gurevich, L. P. Pitaevskii, ZhETF, 65:2(8) (1973), 590–604
[2] E. Ya. Khruslov, Matem. sb., 99(141):2 (1976), 261–281 | DOI | MR | Zbl
[3] A. V. Gurevich, A. L. Krylov, G. A. El, Pisma v ZhETF, 54:2 (1991), 104–109
[4] A. L. Krylov, V. V. Khodorovskii, G. A. El, Pisma v ZhETF, 56:2 (1992), 325–329 | MR
[5] E. V. Teodorovich, PMM, 68:2 (2004), 335–367 | MR | Zbl
[6] S. V. Zakharov, Dokl. RAN, 422:6 (2008), 733–734 | Zbl
[7] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[8] S. V. Zakharov, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 699–706 | DOI | MR | Zbl