Cosmological quantum tunneling and holographic principle
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 313-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The probable trajectory of the ground-state wave function of the universe arises through quantum tunneling by gravitational instantons. We calculate the quantum tunneling rate for an $(n{>}2)$-dimensional closed Friedmann–Robertson–Walker universe with a positive cosmological constant. In four dimensions, we use the holographic principle to relate the tunneling rate to the maximal entropy of the early universe after quantum tunneling.
Keywords: tunneling rate, holographic principle, maximal entropy.
@article{TMF_2013_175_2_a10,
     author = {F. Darabi and Sh. Jalalzadeh},
     title = {Cosmological quantum tunneling and holographic principle},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--320},
     year = {2013},
     volume = {175},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a10/}
}
TY  - JOUR
AU  - F. Darabi
AU  - Sh. Jalalzadeh
TI  - Cosmological quantum tunneling and holographic principle
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 313
EP  - 320
VL  - 175
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a10/
LA  - ru
ID  - TMF_2013_175_2_a10
ER  - 
%0 Journal Article
%A F. Darabi
%A Sh. Jalalzadeh
%T Cosmological quantum tunneling and holographic principle
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 313-320
%V 175
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a10/
%G ru
%F TMF_2013_175_2_a10
F. Darabi; Sh. Jalalzadeh. Cosmological quantum tunneling and holographic principle. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a10/

[1] C. B. Collins, S. W. Hawking, Astrophys. J., 180 (1973), 317–334 | DOI | MR

[2] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 1987 ; R. Brandenberger, C. Vafa, Nucl. Phys. B, 316:2 (1989), 391–410 ; A. A. Tseytlin, C. Vafa, Nucl. Phys. B, 372:1–2 (1992), 443–466, arXiv: hep-th/9109048 | MR | Zbl | DOI | MR | DOI | MR

[3] N. Ishibashi, H. Kawai, Y. Kitazawa, A. Tsuchiya, Nucl. Phys. B, 498:1–2 (1997), 467–491, arXiv: hep-th/9612115 | DOI | MR | Zbl

[4] J. Greensite, Phys. Lett. B, 300:1–2 (1993), 34–37, arXiv: ; A. Carlini, J. Greensite, Phys. Rev. D, 49:2 (1994), 866–878, arXiv: ; E. Elizalde, S. D. Odintsov, A. Romeo, Class. Quant. Grav., 11:4 (1994), L61–L68 gr-qc/9210008gr-qc/9308012 | DOI | MR | DOI | MR | DOI | MR

[5] N. Mankoc Borstnik, H. B. Nielsen, J. Phys. A, 35:49 (2002), 10563–10571, arXiv: ; Phys. Lett. B, 486:3–4 (2000), 314–321, arXiv: ; H. van Dam, Y. J. Ng, Phys. Lett. B, 520:1–2 (2001), 159–162 ; H. B. Nielsen, S. E. Rugh, Why do we live in $3+1$ dimensions, arXiv: hep-ph/0108269hep-ph/0005327hep-th/9407011 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[6] G. W. Gibbons, “The dimensionality of spacetime”, String Theory, Quantum Cosmology and Quantum Gravity, Integrable and Conformal Invariant Theories (Meudon, September 22–26, 1986), Lecture Notes in Physics, 246, eds. H. J. de Vega, N. Sánchez, World Sci., Singapore, 1987, 46–59 ; K. Maeda, “The Einstein gravity as an attractor in higher-dimensional theories”, Gravitational Collapse and Relativity (Kyoto, 7–11 April 1986), eds. H. Sato, T. Nakamura, World Sci., Singapure, 1986, 426–433 ; A. Chodos, S. Detweiler, Phys. Rev. D, 21:8 (1980), 2167–2170 ; M. Szydlowski, J. Szczesny, M. Biesiada, Class. Quant. Grav., 4:6 (1987), 1731–1747 ; M. Demianski, M. Heller, M. Szydlowski, Phys. Rev. D, 36:10 (1987), 2945–2954 | DOI | MR | MR | DOI | MR | DOI | MR | DOI | MR

[7] A. Vilenkin, Phys. Rev. D, 50:4 (1994), 2581–2594, arXiv: gr-qc/9302016 | DOI | DOI | MR | MR

[8] L. Susskind, J. Math. Phys., 36:11 (1995), 6377–6396 | DOI | MR | Zbl

[9] F. Scardigli, R. Casadio, Class. Quant. Grav., 20:18 (2003), 3915–3926, arXiv: hep-th/0307174 | DOI | MR | Zbl

[10] F. Scardigli, R. Casadio, Internat. J. Modern Phys. D, 18:2 (2009), 319–327, arXiv: 0711.3661 | DOI | MR | Zbl