Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 159-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model initial–boundary value problem for the Benjamin–Bona–Mahony–Burgers equation with initial conditions having a physical meaning. We prove the unique local solvability in the classical sense and obtain sufficient conditions for blowup and an estimate of the blowup time. To prove the blowup, we use the known test function method developed in papers by V. A. Galaktionov, E. L. Mitidieri, and S. I. Pohozaev. We note that this is one of the first results toward the blowup for the considered equation.
Keywords: blowup, local solvability, Benjamin–Bona–Mahony–Burgers equation.
@article{TMF_2013_175_2_a1,
     author = {M. O. Korpusov and A. A. Panin},
     title = {Local solvability and solution blowup for {the~Benjamin{\textendash}Bona{\textendash}Mahony{\textendash}Burgers} equation with a~nonlocal boundary condition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {159--172},
     year = {2013},
     volume = {175},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a1/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - A. A. Panin
TI  - Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 159
EP  - 172
VL  - 175
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a1/
LA  - ru
ID  - TMF_2013_175_2_a1
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A A. A. Panin
%T Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 159-172
%V 175
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a1/
%G ru
%F TMF_2013_175_2_a1
M. O. Korpusov; A. A. Panin. Local solvability and solution blowup for the Benjamin–Bona–Mahony–Burgers equation with a nonlocal boundary condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 159-172. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a1/

[1] T. B. Benjamin, J. L. Bona, J. J. Mahony, Philos. Trans. Roy. Soc. London. Ser. A, 272:1220 (1972), 47–78 | DOI | MR | Zbl

[2] M. O. Korpusov, Nonlinear Anal., 75:4 (2012), 1737–1743 | DOI | MR | Zbl

[3] J. P. Albert, J. Math. Anal. Appl., 141:2 (1989), 527–537 | DOI | MR | Zbl

[4] J. D. Avrin, J. A. Goldstein, Nonlinear Anal., 9:8 (1985), 861–865 | DOI | MR | Zbl

[5] E. Bisognin, V. Bisognin, C. R. Charão, A. F. Pazoto, Port. Math. (N.S.), 60:4 (2003), 473–504 | MR | Zbl

[6] P. Biler, Differ. Integral Equ., 5:4 (1992), 891–901 | MR | Zbl

[7] Yu. Chen, Appl. Anal., 30:1–3 (1988), 1–15 | DOI | MR | Zbl

[8] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884, Springer, New York, 2006 | MR | Zbl

[9] T. Hagen, J. Turi, Comput. Appl. Math., 17:2 (1998), 161–172 | MR | Zbl

[10] M. Mei, L. Liu, Ya. S. Wong, Nonlinear Anal., 67:8 (2007), 2527–2539 | DOI | MR | Zbl

[11] V. A. Galaktionov, E. L. Mitidieri, S. I. Pohozaev, Nonlinear Anal., 70:8 (2009), 2930–2952 | DOI | MR | Zbl

[12] A. B. Al'shin, M. O. Korpusov, A. G. Sveshnikov, Blow-Up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 15, Walter de Gruyter, Berlin, 2011 | MR

[13] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Universitetskaya seriya, 7, Tamara Rozhkovskaya, Novosibirsk, 2003 | MR | Zbl