Pseudotoric structures on toric symplectic manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 147-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the existence of a rank-one pseudotoric structure on an arbitrary smooth toric symplectic manifold. As a consequence, we propose a method for constructing Chekanov-type nonstandard Lagrangian tori on arbitrary toric manifolds.
Keywords: symplectic manifold, toric manifold, pseudotoric structure, Lagrangian submanifold.
@article{TMF_2013_175_2_a0,
     author = {S. A. Belyov and N. A. Tyurin},
     title = {Pseudotoric structures on toric symplectic manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--158},
     year = {2013},
     volume = {175},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a0/}
}
TY  - JOUR
AU  - S. A. Belyov
AU  - N. A. Tyurin
TI  - Pseudotoric structures on toric symplectic manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 147
EP  - 158
VL  - 175
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a0/
LA  - ru
ID  - TMF_2013_175_2_a0
ER  - 
%0 Journal Article
%A S. A. Belyov
%A N. A. Tyurin
%T Pseudotoric structures on toric symplectic manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 147-158
%V 175
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a0/
%G ru
%F TMF_2013_175_2_a0
S. A. Belyov; N. A. Tyurin. Pseudotoric structures on toric symplectic manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 2, pp. 147-158. http://geodesic.mathdoc.fr/item/TMF_2013_175_2_a0/

[1] N. A. Tyurin, TMF, 171:2 (2012), 321–325 | DOI | DOI | Zbl

[2] N. A. Tyurin, TMF, 162:3 (2010), 307–333 | DOI | DOI | MR | Zbl

[3] M. Audin, Torus Action on Symplectic Manifolds, Progress in Mathematics, 93, Birkhäuser, Basel, 2004 | MR | Zbl

[4] P. Griffits, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978 | MR

[5] A. Ashtekar, T. Schilling, “Geometrical formulation of quantum mechanics”, On Einstein's Path: Essays in Honor of Engelbert Schücking (New York, USA, December 12–13, 1996), ed. A. Harvey, Springer, New York, 1999, 23–65 | MR | Zbl

[6] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, London Mathematical Society Lecture Note, 338, ed. N. Young, Cambridge Univ. Press, Cambridge, 2007, 279–318 | DOI | MR