Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 132-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive formulas for the transverse electrical conductivity and the permittivity in a quantum collisional plasma using the kinetic equation for the density matrix in the relaxation approximation in the momentum space. We show that the derived formula becomes the classical formula when the Planck constant tends to zero and that when the electron collision rate tends to zero (i.e., the plasma becomes collisionless), the derived formulas become the previously obtained Lindhard formulas. We also show that when the wave number tends to zero, the quantum conductivity becomes classical. We compare the obtained conductivity with the conductivity obtained by Lindhard and with the classical conductivity.
Keywords: Lindhard, Mermin, quantum collisional plasma, conductivity, permittivity, density matrix, commutator, degenerate plasma.
@article{TMF_2013_175_1_a7,
     author = {A. V. Latyshev and A. A. Yushkanov},
     title = {Transverse electrical conductivity of a~quantum collisional plasma~in {the~Mermin} approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {132--143},
     year = {2013},
     volume = {175},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a7/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - A. A. Yushkanov
TI  - Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 132
EP  - 143
VL  - 175
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a7/
LA  - ru
ID  - TMF_2013_175_1_a7
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A A. A. Yushkanov
%T Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 132-143
%V 175
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a7/
%G ru
%F TMF_2013_175_1_a7
A. V. Latyshev; A. A. Yushkanov. Transverse electrical conductivity of a quantum collisional plasma in the Mermin approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 132-143. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a7/

[1] N. D. Mermin, Phys. Rev. B, 1:5 (1970), 2362–2363 | DOI

[2] J. Lindhard, Danske Vid. Selsk. Mat.-Fys. Medd., 28:8 (1954), 1–57 | MR | Zbl

[3] K. L. Kliewer, R. Fuchs, Phys. Rev., 181:2 (1969), 552–558 | DOI

[4] M. Dressel, G. Grüner, Electrodynamics of Solids. Optical Properties of Electrons in Matter, Cambridge Univ. Press, Cambridge, 2003

[5] A. P. van Gelder, Phys. Rev., 187:3 (1969), 833–842 | DOI

[6] D. C. Mattis, J. Bardeen, Phys. Rev., 111:2 (1958), 412–417 | DOI | Zbl

[7] N. A. Zimbovskaya, UFN, 181:8 (2011), 793–826 | DOI | DOI

[8] W. E. Jones, K. L. Kliewer, R. Fuchs, Phys. Rev., 178:3 (1969), 1201–1203 | DOI

[9] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique, Rep. Prog. Phys., 70:1 (2007), 1–87, arXiv: cond-mat/0611257 | DOI

[10] J. E. Valdes, P. Vargas, N. R. Arista, Nucl. Instrum. Meth. Phys. Res. B, 174:1–2 (2001), 9–15 | DOI

[11] D. Anderson, B. Hall, M. Lisak, M. Marklund, Phys. Rev. E, 65:4 (2002), 046417, 5 pp., arXiv: quant-ph/0305102 | DOI

[12] P. K. Shukla, B. Eliasson, UFN, 180:1 (2010), 55–82 | DOI | DOI

[13] B. Eliasson, P. K. Shukla, J. Plasma Phys., 76:1 (2010), 7–17, arXiv: 0911.4594 | DOI

[14] A. Wierling, Interpolation between static local field corrections and the Drude model by a generalized Mermin approach, arXiv: 0812.3835 | DOI

[15] G. Brodin, M. Marklund, G. Manfredi, Phys. Rev. Lett., 100:17 (2008), 175001, 4 pp., arXiv: 0802.0169 | DOI

[16] G. Manfredi, F. Haas, Phys. Rev. B, 64:7 (2001), 075316, 7 pp., arXiv: cond-mat/0203394 | DOI

[17] G. Manfredi, “How to model quantum plasmas”, Topics in Kinetic Theory (Toronto, Canada, March 24–26, 2004), Fields Institute Communications, 46, eds. T. Passot, C. Sulem, P. L. Sulem, AMS, Providence, RI, 2005, 263–287, arXiv: quant-ph/0505004 | MR | Zbl

[18] H. Reinholz, G. Röpke, Phys. Rev. E, 85:3 (2012), 036401, 16 pp. | DOI | MR

[19] D. Peins, P. Nozières, The Theory of Quantum Liquids, v. 1, Normal Fermi Liquids, Benjamin, New York, Amsterdam, 1966

[20] P. C. Martin, Phys. Rev., 161:1 (1967), 143–155 | DOI