Effect of a measuring instrument in the “Bose condensate" of a classical gas in a phase transition and in experiments with negative pressure
Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 93-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We systematically present a new approach to classical thermodynamics using asymptotic distributions from number theory that generalize the Bose–Einstein distribution. We justify the transition to the liquid state, the thermodynamics of fluids, and also the behavior of liquids in the region of negative pressures. We present a comparison with experimental data.
Keywords: measuring instrument, Bose condensate, first-order phase transition, fluid, negative pressure, vessel wall influence, Knudsen criterion, Clapeyron–Clausius law.
@article{TMF_2013_175_1_a6,
     author = {V. P. Maslov},
     title = {Effect of a~measuring instrument in {the~{\textquotedblleft}Bose} condensate" of a~classical gas in a~phase transition and in experiments with negative pressure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--131},
     year = {2013},
     volume = {175},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a6/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Effect of a measuring instrument in the “Bose condensate" of a classical gas in a phase transition and in experiments with negative pressure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2013
SP  - 93
EP  - 131
VL  - 175
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a6/
LA  - ru
ID  - TMF_2013_175_1_a6
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Effect of a measuring instrument in the “Bose condensate" of a classical gas in a phase transition and in experiments with negative pressure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2013
%P 93-131
%V 175
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a6/
%G ru
%F TMF_2013_175_1_a6
V. P. Maslov. Effect of a measuring instrument in the “Bose condensate" of a classical gas in a phase transition and in experiments with negative pressure. Teoretičeskaâ i matematičeskaâ fizika, Tome 175 (2013) no. 1, pp. 93-131. http://geodesic.mathdoc.fr/item/TMF_2013_175_1_a6/

[1] V. P. Maslov, S. E. Tariverdiev, Itogi nauki i tekhn. Ser. Teor. veroyatn. Matem. stat. Teor. kibernet., 19, VINITI, M., 1982, 85–125 | DOI | MR | Zbl

[2] V. P. Maslov, O. Yu. Shvedov, Metod kompleksnogo rostka v zadache mnogikh chastits i v kvantovoi teorii polya, Editorial URSS, M., 2000

[3] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[4] V. P. Maslov, Russ. J. Math. Phys., 15:4 (2008), 493–510 | DOI | MR | Zbl

[5] V. P. Maslov, T. V. Maslova, TVP, 57:3 (2012), 471–498 | DOI

[6] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | Zbl

[7] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[8] A. N. Shiryaev, Veroyatnost, v. 1, Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2004 | MR | Zbl

[9] P. Erdős, J. Lehner, Duke Math. J., 8:2 (1941), 335–345 | DOI | MR | Zbl

[10] V. P. Maslov, Math. Notes, 91:5–6 (2012), 603–609 | DOI | MR

[11] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Izbrannye trudy v trekh tomakh, v. 3, Naukova dumka, Kiev, 1971, 174–243 | MR

[12] V. Ya. Frenkel, Yakov Ilich Frenkel, Nauka, M.–L., 1966

[13] E. M. Apfel'baum, V. S. Vorob'ev, Russ. J. Math. Phys., 18:1 (2011), 26–32 | DOI | MR | Zbl

[14] V. P. Maslov, Threshold levels in economics, arXiv: 0903.4783

[15] K. I. Shmulovich, L. Merkyuri, Vestnik Otdeleniya nauk o Zemle RAN, 1:24 (2006), 1–3

[16] V. P. Maslov, P. P. Mosolov, Nonlinear Wave Equations Perturbed by Viscous Term, De Gruyter Expositions in Mathematics, 31, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[17] S. T. Kuroda, Scattering theory for differential operators. III, Lecture Notes in Mathematics, 448, Springer, Berlin | DOI | MR

[18] G. A. Martynov, Fundamental Theory of Liquids: Method of Distribution Functions, Adam Hilger, Bristol, 1992 | MR

[19] G. L. Litvinov, Zap. nauchn. sem. POMI, 326 (2005), 145–182 | DOI | MR | Zbl

[20] E. M. Apfelbaum, V. S. Vorob'ev, J. Phys. Chem. B, 113:11 (2009), 3521–3526 | DOI

[21] V. P. Maslov, TMF, 161:3 (2009), 420–458 | DOI | DOI | MR | Zbl

[22] E. M. Apfelbaum, V. S. Vorob'ev, G. A. Martynov, J. Phys. Chem. B, 110:16 (2006), 8474–8480 | DOI

[23] V. P. Maslov, Matem. zametki, 83:3 (2008), 465–467 | DOI | DOI | MR | Zbl

[24] V. P. Maslov, Russ. J. Math. Phys., 18:4 (2011), 440–464 | DOI | MR | Zbl

[25] V. P. Maslov, Math. Notes, 92:5–6 (2012), 3–9 | DOI | MR

[26] V. P. Maslov, A. S. Mischenko, Russ. J. Math. Phys., 10:2 (2003), 161–172 | MR | Zbl

[27] N. Khart, Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR | MR | Zbl

[28] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR

[29] V. P. Maslov, UMN, 38:6(234) (1983), 3–36 | DOI | MR | MR | Zbl

[30] V. P. Maslov, TMF, 170:3 (2012), 457–467 | DOI | DOI | Zbl